COVID-19 AND CARDIOVASCULAR DISEASES: FEATURES OF THE COMORBID COURSE
DOI:
https://doi.org/10.32782/health-2024.2.8Keywords:
cardiovascular diseases, SARS-CoV2, COVID-19, myocardial infarction, acute coronary syndrome, troponin, coronary heart disease.Abstract
The basis of the pathogenesis and progression of almost all life-threatening cardiovascular diseases is atherosclerosis, which leads to coronary heart disease, cerebrovascular disease, venous thromboembolism, and peripheral vascular disease, which subsequently causes myocardial infarction, cardiac arrhythmias or stroke Scientists have discovered a link between the new COVID-19 infection and the severity of cardiovascular disease. The infection in a patient with a history of cardiovascular disease is much more severe and is more often complicated by acute respiratory distress syndrome, which can lead to death. Therefore, the purpose of our review was to study the peculiarities of COVID-19 in patients with cardiovascular disease. In principle, the main cause of death in COVID-19 infection is respiratory failure, but today cardiac manifestations occupy competing positions as causes of death in these patients. Comorbid cardiovascular disease is present in 8–25% of the total population infected with COVID-19 and in a higher proportion of those who died. Similar to an influenza outbreak, myocardial damage due to COVID-19 may be associated with increased viscosity, increased clotting cascade, pro-inflammatory effects, or endothelial cell dysfunction caused by the SARS-CoV-2 virus. It is known that patients with COVID-19 had cardiomyocyte hypertrophy, degeneration and necrosis, mild interstitial hyperemia, and edema, along with infiltration of lymphocytes, monocytes, and neutrophils, but no viral component in myocardial tissue. SARS-CoV-2 can activate the coagulation cascade, leading to thrombocytopenia and sometimes to severe hypercoagulability and its consequences, such as cardiac ischemia. The cardiovascular manifestations of COVID-19 infection range from mild elevations in serum troponin and brain natriuretic peptide levels to fulminant myocarditis, lifethreatening arrhythmias, and refractory shock.
References
Shi S., Qin M., Shen B., Cai Y., Liu T., et. al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.0950.
Kodirova Sh. S. Psychological state of patients with cardiovascular diseases after COVID-19. Educational Research in Universal Sciences. 2023. V. 2. Special issue 4. Р. 118–123.
Drosten C., Günther S., Preiser W., van der Werf S., Brodt H. R., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003. № 348(20). Р. 1967–1976. Available from: https://www.ncbi.nlm.nih.gov:80/BLAST/.
Kodirova Sh. S. The study of emotional states and quality of life in patients with chronic heart failure. Problems of biology and medicine. 2019. V. 4. № 2 (115). Р. 232–237.
Kodirova Sh. S. Depression and chronic heart failure. Lambert Academic Publishing. 2022.
Huang C., Wang Y., Li X., Ren L., Zhao J., et. al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020. № 395. Р. 497–506.
Li B., Yang J., Zhao F., Zhi L., Wang X., et. al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020. № 109(5). Р. 531–538.
Bhatraju P. K., Ghassemieh B. J., Nichols M., Kim R., Jerome K. R., et. al. Covid-19 in critically ill patients in the Seattle Region – case series. N. Engl. J. Med. 2020. № 382(21). Р. 2012–2022.
Siddiqi H. K., Mehra M. R. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020. № 39(5). Р. 405–407.
Wu C., Chen X., Cai Y., Xia J. A., Zhou X., et. al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020. doi: 10.1001/jamainternmed.2020.0994
Wu Z., McGoogan J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020. doi: 10.1001/jama.2020.2648.
Goyal P., Choi J. J., Pinheiro L. C., Schenck E. J., Chen R., et. al. Clinical characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020. № 382(24). Р. 2372–2374.
Fang Z., Yi F., Wu K., Lai K., Sun X., et. al. Clinical characteristics of coronavirus pneumonia 2019 (COVID-19): an updated systematic review. medRxiv. 2020. doi: 10.1101/2020.03.07.20032573.
Guan W.-j., Ni Z.-y., Hu Y., Liang W.-h., Ou C.-q., et. al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020. № 382. Р. 1708–1720.
Zheng Y.-Y., Ma Y.-T., Zhang J.-Y., Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020. № 17. Р. 259–260.
Clerkin K. J., Fried J. A., Raikhelkar J., Sayer G., Griffin J. M., et. al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation. 2020. № 141(20). Р. 1648–1655.
Yang J., Zheng Y., Gou X., Pu K., Chen Z., et. al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis. 2020. № 94. Р. 91–95.
Nikolich-Zugich J., Knox K. S., Rios C. T., Natt B., Bhattacharya D., et. al. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. GeroScience. 2020. № 42(2). Р. 505–514.
Kuba K., Imai Y., Ohto-Nakanishi T., Penninger J. M. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010. № 128. Р. 119–128.
South A. M., Diz D., Chappell M. C. COVID-19, ACE2 and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020. № 318(5). Р. H1084–H1090.
lerkin K. J., Fried J. A., Raikhelkar J., Sayer G., Griffin J. M., et. al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation. 2020. № 141(20). Р. 1648–1655.
Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., et. al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020. № 382. Р. 2268–2270.
Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020. № 116(6). Р. 1097–1100.
Yao X. H., Li T. Y., He Z. C., Ping Y. F., Liu H. W., et. al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020. № 49. Р. 411–417.
Fox S. E., Akmatbekov A., Harbert J. L., Li G., Brown J. Q., et. al. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans. medRxiv. 2020. doi: 10.1101/2020.04.06.20050575.
Vaduganathan M., Vardeny O., Michel T., McMurray J. J. V., Pfeffer M. A., et. al. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020. № 382. Р. 1653–1659.
Ferrari C. M., Jessup J., Chappell M. C., Averill D. B., Brosnihan K. B., et. al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005. № 111. Р. 2605–2610.
Nicin L., Abplanalp W.T., Mellentin H., Kattih B., Tombor L., et. al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020. № 41(19). Р. 1804–1806.
Lu R., Zhao X., Li J., Niu P., Yang B., et. al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. № 395. Р. 565–574.
Tian X., Li C., Huang A., Xia S., Lu S., et. al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020. № 9. Р. 382–385.
Shi Y., Yi Y., Li P., Kuang T., Li L., et. al. Diagnosis of severe acute respiratory syndrome (SARS) by detection of SARS coronavirus nucleocapsid antibodies in an antigen-capturing enzyme-linked immunosorbent assay. J Clin Microbiol. 2003. № 41. Р. 5781–5782.
Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., et. al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. № 579. Р. 270–273.
Nguyen J. L., Yang W., Ito K., Matte T. D., Shaman J., et. al. Seasonal influenza infections and cardiovascular disease mortality. JAMA Cardiol. 2016. № 1. Р. 274–281.
Kwong J. C., Schwartz K. L., Campitelli M. A., Chung H., Crowcroft N. S., et. al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 2018. № 378. Р. 345–353.
Tavazzi G., Pellegrini C., Maurelli M., Belliato M., Sciutti F., et. al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020. № 22(5). Р. 911–915.
Mehra M. R., Ruschitzka F. COVID-19 illness and heart failure: a missing link? JACC Heart Fail. 2020. № 8(6). Р. 512–514.
Mehta P., McAuley D. F., Brown M., Sanchez E., Tattersall R. S., et. al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. № 395. Р. 1033–1034.
Henter J.-I., Horne A., Aricó M., Egeler R. M., Filipovich A. H., et. al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007. № 48.Р. 124–131.
Fardet L., Galicier L., Lambotte O., Marzac C., Aumont C., et. al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol. 2014. № 66.Р. 2613–2620.
Bangalore S., Sharma A., Slotwiner A., Yatskar L., Harari R., et. al. ST-segment elevation in patients with Covid-19 – a case series. N Engl J Med. 2020.
Zhang Y., Xiao M., Zhang S., Xia P., Cao W., et. al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020. № 382(17). Р. e38.
Zulfiqar A.-A., Lorenzo-Villalba N., Hassler P., Andrès E. Immune thrombocytopenic purpura in a patient with Covid-19. N Engl J Med. 2020. № 382:e43.
Thygesen K., Alpert J. S., Jaffe A. S., Chaitman B. R., et. al. Fourth Universal Definition of Myocardial Infarction. Circulation. 2018. № 138. Р. e618–e651.
Hu H., Ma F., Wei X., Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2020. doi: 10.1093/eurheartj/ehaa190. pii: 5807656.
Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020. № 46(5). Р. 846–848.
Lippi G., Lavie C. J., Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020. doi: 10.1016/j.pcad.2020.03.001.
Wang D., Hu B., Hu C., Zhu F., Liu X., et. al. Clinical characteristics of 138 hospitalized patients With 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020. № 323. Р. 1061–1069.
Meyer P., Degrauwe S., Delden C. V., Ghadri J.-R., Templin C. Typical takotsubo syndrome triggered by SARSCoV-2 infection. Eur Heart J. 2020. № 41(19). Р. 1860.
Sala S., Peretto G., Gramegna M., Palmisano A., Villatore A., et. al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020. № 41(19). Р. 1861–1862.
Kim I.-C., Kim J. Y., Kim H. A., Han S. COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J. 2020. № 41(19). Р. 1859.
Welt F. G. P., Shah P. B., Aronow H. D., Bortnick A. E., Henry T. D., et. al. Catheterization laboratory considerations during the coronavirus (COVID-19) pandemic: from ACC’s Interventional Council and SCAI. J Am Coll Cardiol. 2020. № 75(18). Р. 2372–2375.
Parsonage W. A., Cullen L., Brieger D., Hillis G. S., Nasis A., et. al. CSANZ position statement on the evaluation of patients presenting with suspected acute coronary syndrome during the COVID-19 pandemic. Heart Lung Circ. 2020. doi: 10.1016/j.hlc.2020.05.003.
Bhimraj A. M. R., Shumaker A. H., Lavergne V., Baden L., Chi-Chung Cheng V., et. al. Infectious Diseases Society of America Guidelines on the treatment and management of patients with COVID-19. Clin Infect Dis. 2020. Apr 27 doi: 10.1093/cid/ciaa478.
Gautret P., Lagier J. C., Parola P., Hoang V. T., Meddeb L., et. al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020. doi: 10.1016/j.ijantimicag.2020.105949.
Yao X., Ye F., Zhang M., Cui C., Huang B., et. al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020. doi: 10.1093/cid/ciaa237.
Giudicessi J. R. N. P., Friedman P. A., Ackerman M. J. Urgent guidance for navigating and circumventing the QTc prolonging and torsadogenic potential of possible pharmacotherapies for COVID-19. Mayo Clin Proc. 2020. № 95(6). Р. 1213–1221.
Taccone F. S., Gorham J., Vincent J.-L. Hydroxychloroquine in the management of critically ill patients with COVID-19: the need for an evidence base. Lancet Respir Med. 2020. № 8(6). Р. 539–541.
Somer M., Kallio J., Pesonen U., Pyykko K., Huupponen R., et. al. Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br J Clin Pharmacol. 2000. № 49. Р. 549–554.
Chu C. M., Cheng V. C., Hung I. F., Wong M. M., Chan K. H., et. al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004. № 59. Р. 252–256.
Mitra R. L., Greenstein S. A., Epstein L. M. An algorithm for managing QT prolongation in coronavirus disease 2019 (COVID-19) patients treated with either chloroquine or hydroxychloroquine in conjunction with azithromycin: possible benefits of intravenous lidocaine. Heart Rhythm Case Rep. 2020. № 6. Р. 244–248.
Sapp J. L., Alqarawi W., MacIntyre C. J., Tadros R., Steinberg C., et. al. Guidance on minimizing risk of drug-induced ventricular arrhythmia during treatment of COVID-19: a statement from the Canadian Heart Rhythm Society. Can J Cardiol. 2020. № 36(6).Р. 948–951.
January C. T., Wann L. S., Calkins H., Chen L. Y., Cigarroa J. E., et. al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2019. № 74.Р. 104–132.
Page R. L., Joglar J. A., Caldwell M. A., Calkins H., Conti J. B., et. al. 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2016. № 133. Р. e471–e505.
Al-Khatib S. M., Stevenson W. G., Ackerman M. J., Bryant W. J., Callans D. J., et. al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2018. № 138. Р. e272–e391.
Lakkireddy D. R., Chung M. K., Gopinathannair R., Patton K. K., Gluckman T. J., et. al. Guidance for cardiac electrophysiology during the coronavirus (COVID-19) pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association. Heart Rhythm. 2020. doi: 10.1016/j.hrthm.2020.03.028.
Kumar S., Haqqani H., Wynn G., Pathak R. K., Lipton J., Mahajan R., et. al. Position statement on the management of cardiac electrophysiology and cardiac implantable electronic devices in australia during the COVID-19 pandemic: a living document. Heart Lung Circ. 2020. doi: 10.1016/j.hlc.2020.04.001.
Szerlip M., Anwaruddin S., Aronow H. D., Cohen M. G., Daniels M. J., et. al. Considerations for cardiac catheterization laboratory procedures during the COVID-19 pandemic perspectives from the Society for Cardiovascular Angiography and Interventions Emerging Leader Mentorship (SCAI ELM) Members and Graduates. Catheter Cardiovasc Interv. 2020. doi: 10.1002/ccd.28887
Arnold R., Tideman P.A., Devlin G., Carroll G., Elder A., et. al. Rural and remote cardiology during the COVID-19 pandemic: CSANZ consensus statement. Heart Lung Circ. 2020. doi: 10.1016/j.hlc.2020.05.001.
Tam C.-C.F., Cheung K.-S., Lam S., Wong A., Yung A., et. al. Impact of coronavirus disease 2019 (COVID-19) outbreak on ST-segment–elevation myocardial infarction care in Hong Kong, China. Circ Cardiovasc Qual Outcomes. 2020. № 13(4).Р. e006631.
Allahwala U. K., Denniss A. R., Zaman S., Bhindi R. Cardiovascular disease in the post-COVID-19 era & the impending tsunami? Heart Lung Circ. 2020. doi: 10.1016/j.hlc.2020.04.004.
Lal S., Hayward C. S., Pasquale C. D., Kaye D., Javorsky G., et. al. COVID-19 and acute heart failure: screening thecritically ill. Heart Lung Circ. 2020. doi: 10.1016/j.hlc.2020.04.005.
Ramanathan K., Antognini D., Combes A., Paden M., Zakhary B., et. al.. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020.№ 8.Р. 518–526.
Yang X., Yu Y., Xu J., Shu H., Xia J. A., et. al. Clinical course and outcomes of critically ill patients with SARSCoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020.№ 8. Р. 475–481.
MacLaren G., Fisher D., Brodie D. Preparing for the most critically ill patients with COVID-19: the potential role of extracorporeal membrane oxygenation. JAMA. 2020. doi: 10.1001/jama.2020.2342.