STRUCTURE OF RESPIRATORY DISEASE AND THE ROLE OF URBANIZATION IN THE PREVALENCE OF THIS GROUP OF DISEASES

Authors

DOI:

https://doi.org/10.32782/health-2024.2.9

Keywords:

urbanization, respiratory diseases, asthma, COPD.

Abstract

Respiratory diseases affect one billion people worldwide and are the leading cause of death. The purpose of our review was to study the impact of urbanization on the prevalence of respiratory diseases by analyzing modern scientific sources of information on the selected topic. The effects of urbanization on health, morbidity, and mortality are numerous. Many highly developed countries of the world suffer from severe air pollution, which is now one of the main environmental threats. Polluted air can lead to various respiratory diseases and cause serious damage to the health of city dwellers. Urban populations, especially low- and middle-income countries, are exposed to various risk factors contributing to lung shrinkage and accelerated decline in lung function. Namely: respiratory infections in childhood, micronutrient deficiencies, and ambient and household air pollution can affect lung size and function, thereby exposing children to obstructive lung disease in adulthood. High levels of cortisol and inflammatory biomarkers due to urban stressors have been linked to lung damage. Exposure to indoor and outdoor allergens, pollutants, and irritants in the early years of life can change a child’s immune system response from a non-asthmatic to an asthmatic phenotype, thus leading to asthma in adults. It is possible to reduce the threats of respiratory diseases and risks through decentralization and deconcentration, reducing the dependence of human development on the city. Instead of large cities, it is better to have a network of small self-sufficient smart cities or rural areas, equipped with digital infrastructure, proper water and sewage treatment systems, and reliable energy supply. This type of decentralization could be the answer to new threats and open up a more stable future for humanity.

References

Bousquet J., Kiley J., Bateman E. D., Viegi G., Cruz A. A., Khaltaev N., et al. Prioritised research agenda for prevention and control of chronic respiratory diseases. Eur Respir J. 2010. № 36(5). Р. 995–1001. 10.1183/09031936.00012610.

Iñiguez C., Royé D., Tobía A. Contrasting patterns of temperature related mortality and hospitalization by cardiovascular and respiratory diseases in 52 Spanish cities. Environ. Res. 2021. № 192. Р. 110191.

Khomenko S., Cirach M., Pereira-Barboza E., Mueller N., Barrera-Gómez J., Rojas-Rueda D., et al. Premature mortality due to air pollution in European cities: a health impact assessment. The Lancet. Planetary health. 2021. № 5(3). Р. e121–e134. https://doi.org/10.1016/S2542-5196(20)30272-2.

Nieuwenhuijsen M. J. Urban and transport planning pathways to carbon neutral, liveable and healthy cities; A review of the current evidence. Environment international. 2020. № 140. Р. 105661. https://doi.org/10.1016/j.envint.2020.105661.

Nieuwenhuijsen M. J. New urban models for more sustainable, liveable and healthier cities post covid19; reducing air pollution, noise and heat island effects and increasing green space and physical activity. Environment international. 2021. № 157. Р. 106850. https://doi.org/10.1016/j.envint.2021.106850.

Koreny M., Arbillaga-Etxarri A., Bosch de Basea M., Foraster M., Carsin A. E., Cirach M., et al. Urban environment and physical activity and capacity in patients with chronic obstructive pulmonary disease. Environmental research. 2022. № 214(Pt 2). Р. 113956. https://doi.org/10.1016/j.envres.2022.113956.

Glazener A., Sanchez K., Ramani T., Zietsman J., Nieuwenhuijsen M. J., Mindell J. S., Fox M. Fourteen pathways between urban transportation and health: A conceptual model and literature review. Journal of Transport and Health. 2021. № 21. Р. 101070. https://doi.org/10.1016/j.jth.2021.101070.

Giles-Corti B., Vernez-Moudon A., Reis R., Turrell G., Dannenberg A. L., Badland H., et al. City planning and population health: a global challenge. Lancet (London, England). 2016. № 388(10062). Р. 2912–2924. https://doi.org/10.1016/S0140-6736(16)30066-6.

Khreis H., Sanchez K. A., Foster M., Burns J., Nieuwenhuijsen M. J., Jaikumar R., et al. Urban policy interventions to reduce traffic-related emissions and air pollution: A systematic evidence map. Environment international. 2023. № 172. Р. 107805. https://doi.org/10.1016/j.envint.2023.107805.

Haneen Khreis, Anthony D. May, Mark J. Nieuwenhuijsen. Health impacts of urban transport policy measures: a guidance note for practice J Transp Health. 2017. № 6. Р. 209–227.

United Nations, Department of Economic and Social Affairs, Statistics Division. Methods and classifications, population density and urbanisation, standards and methods, concepts and definitions, paras. 2.81–2.88. 2010. URL: http://unstats.un.org/unsd/methods.htm. (accessed on 01.02.2024).

Arslan H., Baltaci, H., Sahin U. A., Onat B. The relationship between air pollutants and respiratory diseases for the western Turkey. Atmos. Pollut. Res. 2022. № 13. Р. 101322.

Hossain M. S., Frey, H. C., Louie P. K. K., Lau, A. H. Combined effects of increased O3 and reduced NO2 concentrations on short-term air pollution health risks in Hong Kong. Environ. Pollut. 2020. № 270. Р. 116280.

Çapraz Ö., Deniz A. Assessment of hospitalizations from asthma, chronic obstructive pulmonary disease and acute bronchitis in relation to air pollution in İstanbul, Turkey. Sustain. Cities Soc. 2021. № 72. Р. 103040.

World Health Organization. Asthma. URL: https://www.who.int/news-room/fact-sheets/detail/asthma (accessed on 04.11.2023).

Tajudin M. A. B. A., Khan M. F., Mahiyuddin W. R. W., Hod R., Latif M. T., et al. Risk of concentrations of major air pollutants on the prevalence of cardiovascular and respiratory diseases in urbanized area of Kuala Lumpur, Malaysia. Ecotox. Environ. Safety. 2019. № 171. Р. 290–300.

Pannullo F., Lee D., Neal L., Dalvi M., Agnew P., O’Connor F. M., et al. Quantifying the impact of current and future concentrations of air pollutants on respiratory disease risk in England. Environ. Health. 2017. № 16. Р. 29. [Google Scholar] [CrossRef] [Green Version].

Juginović A., Vuković M., Aranza I., Biloš V. Health impacts of air pollution exposure from 1990 to 2019 in 43. European countries. Sci Rep. 2021. № 11. Р. 22516.

Zhou M. G., He G. J., Liu Y. N., Yin P., Li Y. C., Kan H. D., et al. The associations between ambient air pollution and adult respiratory mortality in 32 major Chinese cities, 2006–2010. Environ. Res. 2015. № 137. Р. 278–286.

Liao Y. X., Sun J., Qian Z. M., Mei S. J., Li Y., Lu Y., et al. Modification by seasonal influenza and season on the association between ambient air pollution and child respiratory diseases in Shenzhen, China. Atmos. Environ. 2020. № 234. Р. 117621.

Renzi M., Scortichini M., Forastiere F., De’ Donato F., Michelozzi P., Davoli M., et al. A nationwide study of air pollution from particulate matter and daily hospitalizations for respiratory diseases in Italy. Sci. Total Environ. 2022. № 807. Р. 151034.

Ibrahim M. F., Hod R., Nawi A. M., Sahani M. Association between ambient air pollution and childhood respiratory diseases in low- and middle-income Asian countries: A systematic review. Atmos. Environ. 2021. № 256. Р. 118422.

Phosri A., Ueda K., Phung V. L. H., Tawatsupa B., Honda A., Takano H. Effects of ambient air pollution on daily hospital admissions for respiratory and cardiovascular diseases in Bangkok, Thailand. Sci. Total Environ. 2019. № 651. Р. 1144–1153.

Chen F., Liu Z., Huang T., Wang B., Sun Z., Gao X., Wang W. Short Term Effects of air pollution on the risk of influenza in Jinan, China during 2020-2021: A time series analysis. Atmosphere. 2023. № 14. Р. 53.

Song B., Zhang H., Jiao L., Jing Z., Li H., Wu S. Effect of high-level fine particulate matter and its interaction with meteorological factors on AECOPD in Shijiazhuang, China. Sci. Rep. 2022. № 12. Р. 8711.

Tao Y., Mi S. Q., Zhou S. H., Wang S. G., Xie X. Y. Air pollution and hospital admissions for respiratory diseases in Lanzhou, China. Environ. Pollut. 2014. № 185. Р. 196–201.

Buist A. S., McBurnie M. A., Vollmer W. M., Gillespie S., Burney P., Mannino D. M., et al. BOLD Collaborative Research Group. International variation in theprevalence of COPD (the BOLD Study): a population-based prevalencestudy. Lancet. 2007. Vol. 1. № 370(9589). Р. 741–750. doi: http://dx.doi.org/10.1016/S0140-6736(07)61377-4.

Mannino D. M., McBurnie M. A., Tan W., Kocabas A., Anto J., Vollmer W. M., et al. BOLD Collaborative Research Group. Restricted spirometry in the burden oflung disease study. Int J Tuberc Lung Dis. 2012. № 16(10). Р. 1405–1411.

an Gemert F., Kirenga B., Chavannes N., Kamya M., Luzige S., Musinguzi P., et al. Prevalence of chronic obstructive pulmonary disease and associatedrisk factors in Uganda (FRESH AIR Uganda): a prospective cross-sectionalobservational study. Lancet Glob Health. 2015. № 3(1). Р. e44–51. doi: http://dx.doi.org/10.1016/S2214-109X(14)70337-7.

Siddharthan T., Grigsby M., Morgan B., Kalyesubula R., Wise R. A., Kirenga B., Checkley W. Prevalence of chronic respiratory disease in urban and rural Uganda. Bulletin of the World Health Organization. 2019. № 97(5). Р. 318–327. https://doi.org/10.2471/BLT.18.216523.

Swanney M. P., Ruppel G., Enright P. L., Pedersen O. F., Crapo R. O., Miller M. R., et al. Using the lower limit of normal for the FEV1/FVC ratio reduces themisclassification of airway obstruction. Thorax. 2008. № 63(12). Р. 1046–1051. doi: http://dx.doi.org/10.1136/thx.2008.098483

Siddharthan T., Grigsby M. R., Goodman D., Chowdhury M., Rubinstein A., Irazola V., et al. Association between household air pollution exposureand chronic obstructive pulmonary disease outcomes in 13 low- andmiddle-income country settings. Am J Respir Crit Care Med. 2018. № 197(5). Р. 611–20. doi: http://dx.doi.org/10.1164/rccm.201709-1861OC

Mejza F., Gnatiuc L., Buist A. S., Vollmer W. M., Lamprecht B., Obaseki D. O., et al. BOLD collaborators, BOLD study collaborators. Prevalence and burden ofchronic bronchitis symptoms: results from the BOLD study. Eur Respir J. 2017. Vol. 22. № 50(5).Р. 1700621. doi: http://dx.doi.org/10.1183/13993003.00621-2017.

Ehrlich R. I., White N., Norman R., Laubscher R., Steyn K., Lombard C., et al. Predictors of chronic bronchitis in South African adults. Int J Tuberc LungDis. 2004. № 8(3). Р. 369–376.

Kirenga B. J., Meng Q., van Gemert F., Aanyu-Tukamuhebwa H., Chavannes N., Katamba A., et al. The state of ambient air quality in two Ugandan cities:a pilot cross-sectional spatial assessment. Int J Environ Res Public Health. 2015 Vol. 15. № 12(7). Р. 8075–8091. doi: http://dx.doi.org/10.3390/ijerph12070807.

Pate C. A., Zahran H. S., Malilay J., Hsu J. The shifting prevalence of asthma and allergic disease in US children. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 2022. № 129(4). Р. 481–489. https://doi.org/10.1016/j.anai.2022.06.030

Ezzati M., Vander Hoorn S., Lawes C. M.., Leach R., James W. P. T., Lopez A. D., et al. Rethinking the “diseases of affluence” paradigm: global patterns ofnutritional risks in relation to economic development. PLoS Med. 2005. № 2(5). Р. e133. doi: http://dx.doi.org/10.1371/journal.pmed.0020133

Hayden L. P., Hobbs B. D., Cohen R. T., Wise R. A., Checkley W., Crapo J. D., et al. COPD Gene Investigators. Childhood pneumonia increases risk for chronic obstructive pulmonary disease: the COPDGene study. Respir Res. 2015. Vol. 21. № 16(1). Р. 115. doi: http://dx.doi.org/10.1186/s12931-015-0273-8.

Checkley W., West K. P. Jr., Wise R. A., Baldwin M. R., Wu L., LeClerq S. C., et al. Maternal vitamin A supplementation and lung function in offspring. N. Engl J Med. 2010. Vol. 13. № 362(19). Р. 1784–1794. doi: http://dx.doi.org/10.1056/NEJMoa0907441.

Torres-Duque C., Maldonado D., Pérez-Padilla R., Ezzati M., Viegi G., Forum of International Respiratory Studies (FIRS). Task Force on Health Effects ofBiomass Exposure. Biomass fuels and respiratory diseases: a review of theevidence. Proc Am Thorac Soc. 2008. Vol. 15. № 5(5). Р. 577–590. doi: http://dx.doi.org/10.1513/pats.200707-100RP.

Kann P. H., Münzel M., Hadji P., Daniel H., Flache S., Nyarango P., et al. Alterationsof cortisol homeostasis may link changes of the sociocultural environmentto an increased diabetes and metabolic risk in developing countries: aprospective diagnostic study performed in cooperation with the Ovahimbapeople of the Kunene region/northwestern Namibia. J Clin Endocrinol Metab. 2015. № 100(3). Р. 482–486. doi: http://dx.doi.org/10.1210/jc.2014-2625

Godfrey R. C. Asthma and IgE levels in rural and urban communitiesof the Gambia. Clin Allergy. 1975. № 5(2). Р. 201–207. doi: http://dx.doi.org/10.1111/j.1365-2222.1975.tb01853.x

Lienhardt C. From exposure to disease: the role of environmental factorsin susceptibility to and development of tuberculosis. Epidemiol Rev. 2001. № 23(2). Р. 288–301. doi: http://dx.doi.org/10.1093/oxfordjournals.epirev.a000807

Sustainable Urbanization Critical to COVID-19 Recovery, Better Quality of Life. UN News. URL: https://news.un.org/en/story/2020/10/1076532#:~:text=Cities%20have%20 been%20at%20the,development%20and%20combating%20

climate%20change. (accessed on 04.01.2024).

Post COVID-19. Will Urbanization Be a Thing of the Past? Asia Global On-line. URL: https://www.asiaglobalonline.hku.hk/post-covid-19-will-urbanization-be-thing-past. (accessed on 03.01.2024).

Neiderud C.-J. How Urbanization Affects the Epidemiology of Emerging Infectious Diseases. Infection Ecology & Epidemiology. 2015. № 1(5). DOI: https://www.tandfonline.com/doi/full/10.3402/iee.v5.27060

No Time to Wait. Securing Resistance from Drug-Resistant Injections. Report to the Secretary-General of the UN. IACG. 2019. URL: https://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG_final_report_EN.pdf?ua=1. (accessed on 03.01.2024).

O’Sullivan F. Paris Mayor: It’s Time for a “15-Minute City”. Bloomberg City Lab. URL: https://www.bloomberg.com/news/articles/2020-02-18/paris-mayor-pledges-a-greener-15-minute-city. (accessed on 03.01.2024).

Perry G., De Silva G. Urbanization in the Age of Pandemic. New Security Beat. URL: https://www.newsecuritybeat.org/2020/05/urbanization-age-pandemic/(accessed on 03.01.2024).

Frearson A. Shift Architecture Urbanism Designs Social Distancing into the Food Market. De Zeen. URL: https://www.dezeen.com/2020/04/03/shift-architecture-urbanism-designs-social-distancing-into-the-food-market/. (accessed on 03.01.2024).

Eltarabily S., Elghezanwy D. Post-Pandemic Cities – The Impact of COVID-19 on Cities and Urban Design. Architecture Research. 2020; 10(3): 75–84. DOI: http://article.sapub.org/10.5923.j.arch.20201003.02.html#Sec3.1

Cortright J. Is COVID-19 the End of Cities? City Observatory. URL: https://www.strongtowns.org/journal/2020/4/21/is-covid-19-the-end-of-cities. (accessed on 03.01.2024).

Duarte Pinheiro M., Cardoso L. N. COVID-19 Could Leverage a Sustainable Built Environment. Sustainability. 2020. № 12. DOI: https://doi.org/10.3390/su12145863

What Is the Future for Smart Cities after Covid-19? Oxford Business Group. URL: https://oxfordbusinessgroup.com/news/what-future-smart-cities-after-covid-19. (accessed on 03.01.2024).

Lubell S. Commentary: Past pandemics changed the design of cities. Six ways COVID-19 could do the same. Los Angles Times. Retrieved from The planning report. 2020.

Published

2024-08-27

Issue

Section

MEDICINE