THEORETICAL AND PRACTICAL JUSTIFICATION OF THE SAPROPHYTIC THEORY OF CANCER

Authors

DOI:

https://doi.org/10.32782/health-2024.2.11

Keywords:

saprophytes, cancer, infection, microorganisms.

Abstract

The aim of the work was to justify the theoretical and practical aspects of the saprophytic theory of cancer. In the medical section of the book “The Realities of Life”, published in 2009, I described this theory for the first time with some elements of theoretical and practical justification among all the theories of cancer origin. The saprophytic theory of cancer, the theory of the occurrence of cancerous tumors can be of great importance. In this theory the main importance in the initiation of carcinogenesis in the human body have saprophytic bacteria that live with us constantly. The saprophytic theory, as an etiological cause of cancer, may be important in the development of cancerous tumors. There is a significant amount of scientific research and clearly established facts that confirm the infectious origin, whether bacterial or viral, of a cancerous tumor. Cancer can be caused by a type of saprophyte that is practically unaffected by antibiotics. A microorganism that can cause cancerous disease, has the property of reducing the human antifungal immunity, has both the properties of a virus and a bacterium. It is possible that this virus, which settled in bacterium, combined its pathogenic properties for humans. Bacterium at the same time with virus, merging into one organism, into one unit, can contribute to the development of cancer. There is an opinion that the high temperature of the human body sometimes kills cancer cells. Microorganisms are the first step of the oncogenic process, they start it, cause it to appear, and in the future they may not participate in its development. It is likely that only at the first stage of cancer occurrence, we need to kill the microorganisms that are the cause of the cancer. Or we need to find a potential human enemy and create a universal vaccine against it, which will protect the human organism from cancer. Vaccine is not against cancer, but against a microorganism that causes cancer, releasing carcinogenic substances that start the cancer process in organs and tissues.

References

Anderson A. R. A., Weaver A. M., Cummings P. T., Quaranta V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell. 2006. Р. 905–915.

Varmus H. The new era in cancer research. Science. 2006. Р. 1162–1165.

Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. New York, NY: Garland Publishing Inc. 2001.

Soto A. M., Sonnenschein C. Regulation of cell proliferation: the negative control perspective. Ann NY Acad Sci. 1991: 412–418.

Сабадишин Р. О. Реалії життя. Рівне : Рівн. друк., 2009. 508 с.

Sonnenschein C., Soto A. M. The Society of Cells: Cancer and Control of Cell Proliferation. New York: Springer Verlag; 1999.

Ribbert H. Zur Entstehung der Geschwuelste. Duetsche Medizinische Wochenzeitschrift. 1896. Р. 471–474.

Triolo V. A. Nineteenth century foundations of cancer research origins of experimental research. Cancer Res. 1964. Р. 4–27.

Potter J. D. Morphostats: a missing concept in cancer biology. Cancer Epidem Biomar. 2001. Р. 167–170.

Vogelstein B., Kinzler K. W. Cancer genes and the pathways they control. Nature Medicine. 2004. Р. 789–799.

Radisky D. C., Bissell M. J. Matrix metalloproteinase-induced genomic instability. Curr Opin Genet Dev. 2006. Р. 45–50.

Laconi E. The evolving concept of tumor microenvironments. BioEssays. 2007. Р. 738–744.

Aggarwal R., Huang J., Alumkal J. J., Zhang L., Feng F. Y., Thomas G. V., et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: A multi-institutional prospective study. J. Clin. Oncol. 2018. № 36. Р. 2492–2503.

Tu S. M., Campbell M., Shah A., Logothetis C. J. Application of a successful germ cell tumor paradigm to the challenges of common adult solid cancers. Journal of cell science & therapy. 2021. № 12. Р. 301.

Abed J., Maalouf N., Manson A. L., Earl A. M., Parhi L., Emgård J. E. M., et al. Colon Cancer-Associated Fusobacterium nucleatum May Originate From the Oral Cavity and Reach Colon Tumors via the Circulatory System. Frontiers in Cellular and Infection Microbiology. 2020. № 10. Р. 400.

Peled J. U., Gomes A. L. C., Devlin S. M., Littmann E. R., Taur Y., Sung A. D., et al. Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. The New England Journal of Medicine. 2020. № 382(9). Р. 822–834.

Sims T. T., El Alam M. B., Karpinets T. V., Dorta-Estremera S., Hegde V. L., Nookala S., et al. Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation. Communications Biology. 2021. № 4(1). Р. 237.

Rodriguez RM, Menor M, Hernandez BY, Deng Y, & Khadka VS (2021). Bacterial Diversity Correlates with Overall Survival in Cancers of the Head and Neck, Liver, and Stomach. Molecules, 26(18). 10.3390/molecules26185659

Vétizou M., Pitt J. M., Daillère R., Lepage P., Waldschmitt N., Flament C., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015. № 350(6264). Р. 1079–1084.

Sivan A., Corrales L., Hubert N., Williams J. B., Aquino-Michaels K., Earley Z. M., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015. № 350(6264). Р. 1084–1089.

Limeta A., Ji B., Levin M., Gatto F., Nielsen J. Meta-analysis of the gut microbiota in predicting response to cancer immunotherapy in metastatic melanoma. JCI Insight. 2020. № 5(23). 10.1172/jci.insight.140940

Mager L. F., Burkhard R., Pett N., Cooke N. C. A., Brown K., Ramay H., et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 2020. № 369(6510). Р. 1481–1489.

Griffin M. E., Espinosa J., Becker J. L., Luo J-D., Carroll T. S., Jha J. K., et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science. 2021. № 373(6558). Р. 1040–1046.

Daillère R., Vétizou M., Waldschmitt N., Yamazaki T., Isnard C., Poirier-Colame V., et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity. 2016. № 45(4). Р. 931–943.

Lam K. C., Araya R. E., Huang A., Chen Q., Di Modica M., Rodrigues R. R., et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell. 2021. № 184(21). Р. 5338–5356.

Alexander J. L., Wilson I. D., Teare J., Marchesi J. R., Nicholson J. K., Kinross J. M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nature Reviews. Gastroenterology & Hepatology. 2017. № 14(6). Р. 356–365

Daisley B. A., Chanyi R. M., Abdur-Rashid K., Al K. F., Gibbons S., Chmiel J. A., et al. Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients. Nature Communications. 2020. № 11(1). Р. 4822.

Kwa M., Plottel C. S., Blaser M. J., Adams S. The Intestinal Microbiome and Estrogen Receptor-Positive Female Breast Cancer. Journal of the National Cancer Institute. 2016. № 108(8). 10.1093/jnci/djw029

Komorowski A. S., Pezo R. C. Untapped “-omics”: the microbial metagenome, estrobolome, and their influence on the development of breast cancer and response to treatment. Breast Cancer Research and Treatment. 2020. № 179(2), 287–300.

Cristiano S., Leal A., Phallen J., Fiksel J., Adleff V., Bruhm D. C., et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019. № 570(7761). Р. 385–389.

Downloads

Published

2024-08-27

Issue

Section

MEDICINE