PATHOGENETIC FEATURES OF PELVIC INFLAMMATORY DISEASES IN CONDITIONS CARDIOMETABOLIC DISORDERS
DOI:
https://doi.org/10.32782/health-2024.3.1Keywords:
pelvic inflammatory diseases, cardiometabolic disorders, obesity, diabetes, hypertensionAbstract
The term “cardiometabolic risk” is used to refer to those factors that contribute to the development of both cardiovascular disease and type 2 diabetes. According to the latest scientific data, several key pathogenetic features link cardiometabolic disorders and diseases of the pelvic organs, namely: a change in the immune response; endocrine disorders; adipose tissue and inflammation; microbiome imbalance; behavioral risk factors. A history of PID can be a marker for the future development of hypertension and diabetes (type 2), two major risk factors for cardiovascular disease. A study was conducted in Taiwan where the increase in PID was positively correlated with the number of strokes. Chronic infection and atherosclerosis are associated with cytokines, endothelial dysfunction, oxidized lowdensity lipoprotein cholesterol, or elevated C-reactive protein. Interleukins and other cytokines are markedly increased in patients with PID. Increased cytokines may cause further endothelial dysfunction and atherosclerosis. One of the potential mechanisms between PID and cardiometabolic abnormalities is direct invasion of the arterial vasculature. Several studies have identified Chlamydia trachomatis in cardiovascular tissue, suggesting that it may play a role in the development of cardiovascular disease through local effects. A second potential mechanism involves systemic responses to (indirect) effects of infection. Molecular components of pathogens can be structurally similar (molecular mimicry) to host proteins, leading to cross-reactivity because the immune system recognizes host proteins as foreign. The increased glucose level in the blood in diabetes damages small blood vessels. This, in turn, disrupts blood circulation in the organs of the small pelvis, causing chronic inflammatory processes, slowing tissue healing, and creating a favorable environment for the development of infections.
References
Timmis A., Townsend N., Gale C. P., Torbica A., Lettino M., Petersen S. E., et al. European society of cardiology: cardiovascular disease statistics 2019. Eur Heart J. 2020. № 41(1). Р. 12–85.
O’Flaherty M., Allender S., Taylor R., Stevenson C., Peeters A., Capewell S. The decline in coronary heart disease mortality is slowing in young adults (Australia 1976–2006): a time trend analysis. Int J Cardiol. 2012. № 158(2). Р. 193–198.
Khot U. N., Khot M. B., Bajzer C. T., Sapp S. K., Ohman E. M., Brener S. J., et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003. № 290(7). Р. 898.
Okoth K., Chandan J. S., Marshall T., Thangaratinam S., Thomas G. N., Nirantharakumar K., et al. Association between the reproductive health of young women and cardiovascular disease in later life: umbrella review. BMJ. 2020. № 371. Р. m3502. https://doi.org/10.1136/bmj.m3502.
Liou T. H., Wu C. W., Hao W. R., Hsu M. I., Liu J. C., Lin H. W. Risk of myocardial infarction in women with pelvic inflammatory disease. Int J Cardiol. 2013. № 167(2). Р. 416–420.
Chen P. C., Tseng T. C., Hsieh J. Y., Lin H. W. Association between stroke and patients with pelvic inflammatory disease: a nationwide population-based study in taiwan. Stroke. 2011. № 42(7). Р. 2074–2076.
Greydanus D. E., Dodich C. Pelvic inflammatory disease: a poignant, perplexing, potentially preventable problem for patients and physicians. Curr Opin Pediatr. 2015. № 27.Р. 92–99.
Ford G. W., Decker C. F. Pelvic inflammatory disease. Dis Mon. 2016. № 62. Р. 301–305.
Datta S. D., Torrone E., Kruszon-Moran D., Berman S., Johnson R., Satterwhite C. L., et al. Chlamydia trachomatis trends in the United States among persons 14 to 39 years of age, 1999-2008. Sex Transm Dis. 2012. № 39. Р. 92–96.
Brunham R. C., Gottlieb S. L., Paavonen J. Pelvic inflammatory disease. N Engl J Med. 2015. № 372. Р. 2039–2048.
Jennings L. K., Krywko D. M. Pelvic Inflammatory Disease (PID). StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2018.
Ross J., Cole M., Evans C., Lyons D., Dean G., Cousins D. United Kingdom National Guideline for the Management of Pelvic Inflammatory Disease [Internet]. British Association for Sexual Health and HIV; [cited 2023Feb22]. 2018. Available from: https://www.bashhguidelines.org/media/1170/pid-2018.pdf.
Scholes D, Satterwhite C. L., Yu O., Fine D., Weinstock H., Berman, S. Long-term trends in Chlamydia trachomatis infections and related outcomes in a U.S. managed care population. Sex Transm Dis. № 2012. №. 39. Р. 81–88.
Epstein S. E., Zhou Y. F., Zhu J. Infection and atherosclerosis: emerging mechanistic paradigms. Circulation. 1999. № 100. Р. e20.
Pérez-López F. R., Ornat L., Pérez-Roncero G. R., López-Baena M. T., Sánchez-Prieto M., Chedraui P. The effect of endometriosis on sexual function as assessed with the Female Sexual Function Index: systematic review and meta-analysis. Gynecol Endocrinol. 2020. № 36(11). Р. 1015–1023. doi: 10.1080/09513590.2020.1812570.
Renehan A. G., Zwahlen M., Egger M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nature reviews. Cancer. 2015. № 15(8). Р. 484–498.
Van Dam A. D., Boon M. R., Berbee J. F. P., Rensen P. C. N., van Harmelen V. Targeting white, brown and perivascular adipose tissue in atherosclerosis development. European journal of pharmacology. 2017. № 816. Р. 82–92.
Cheong K. M. Pelvic inflammatory disease and myocardial infarction. Int J Cardiol. 2012. № 158(3). Р. 463.
Kelvin Okoth, G. Neil Thomas, Krishnarajah Nirantharakumar, Nicola J. Adderley. Risk of cardiometabolic outcomes among women with a history of pelvic inflammatory disease: a retrospective matched cohort study from the UK. BMC Women's Health volume. 2023. № 23(1). Р. 80.
Epstein S. E., Zhou Y. F., Zhu J. Infection and atherosclerosis: emerging mechanistic paradigms. Circulation. 1999. № 100. Р. e20.
Fan Y., Wang S., Yang X. Chlamydia trachomatis (mouse pneumonitis strain) induces cardiovascular pathology following respiratory tract infection. Infect Immun. 1999. № 67(11). Р. 6145–6151.
Mavrogeni S., Manoussakis M., Spargias K., Kolovou G., Saroglou G., Cokkinos D. V. Myocardial involvement in a patient with chlamydia trachomatis infection. J Card Fail. 2008. № 14(4). Р. 351–353.
Almeida N. C. C., Queiroz M. A. F., Lima S. S., Costa I. B., Fossa M. A. A., Vallinoto A. C. R., et al. Association of chlamydia trachomatis, C. Pneumoniae, and IL-6 and IL-8 gene alterations with heart diseases. Front Immunol. 2019. № 10. Р. 87.
Bachmaier K., Nikolaus N., De La Maza L. M., Sukumar P., Hessel A., Penninger J. M. Chlamydia infections and heart disease linked through antigenic mimicry. Science. 1999. № 283(5406). Р. 1335–1339.
Kofler S., Nickel T., Weis M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci (Lond). 2005. № 108(3). Р. 205–213.
Chan C. T., Lieu M., Toh B. H., Kyaw T. S., Bobik A., Sobey C. G., et al. Antibodies in the pathogenesis of hypertension. Biomed Res Int. 2014. № 2014. Р. 1–9.
Cani P. D., Amar J., Iglesias M. A., Poggi M., Knauf C., Bastelica D., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007. № 56(7). Р. 1761–1772.
Park K., Egerman R., Sattari M., Kaufman N. Improving documentation of adverse pregnancy outcomes and assocaited cardiovascular risk in women. J Am Coll Cardiol. 2019. № 73(9). Р. 1756.
Janas P., Kucybata I., Padon-Pokracka M., Huras H. Telocytes in female reproductive system: An overview of up-todate knowledge. Adv Clin Exp Med. 2018. № 27. Р. 559–565.
Varga I., Urban L., Kajanova M., Polak S. Functional histology and possible clinical significance of recently discovered telocytes inside the female reproductive system. Arch Gynecol Obstet 2016. № 294. Р. 417–422.
Yang J, Chi C, Liu Z Yang G., Shen Z. J., Yang X. J. Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J Cell Mol Med. 2015. № 19(7). Р. 1720–1728.
Enciu A. M., Popescu L. M. Telopodes of telocytes are influenced in vitro by redox conditions and ageing. Mol Cell Biochem. 2015. № 410(1–2). Р. 165–174.
Chen P. C., Tseng T. C., Hsieh J. Y., Lin H. W. Association between stroke and patients with pelvic inflammatory disease: a nationwide population-based study in Taiwan. Stroke. 2011. № 42(7). Р. 2074–2076. https://doi.org/10.1161/STROKEAHA.110.612655
Richter H. E., Holley R. L., Andrews W. W., Owen J., Miller K. B. The association of interleukin 6 with clinical and laboratory parameters of acute pelvic inflammatory disease. Am J Obstet Gynecol. 1999. № 181. Р. 940–944.
Libby P., Ridker P. M. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004. № 116(Suppl 6A). Р. 9S–16S.
Prasad Abhiram, Zhu Jianhui, Halcox Julian P. J., Waclawiw Myron A., Epstein Stephen E., Quyyumi Arshed A. Predisposition to atherosclerosis by infections: Role of endothelial dysfunction. Circulation. 2002. № 106. Р. 184–190.
Pradhan A. D., Manson J. E., Rossouw J. E., Siscovick D. S., Mouton C. P., Rifai N., et al. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women's Health Initiative observational study. JAMA. 2002. № 288. Р. 980–987.
Memon R. A., Staprans I., Noor M., Holleran W. M., Uchida Y., Moser A. H., et al. Infection and inflammation induce LDL oxidation in vivo. Arterioscler Thromb Vasc Biol. 2000. № 20. Р. 1536–1542.
Virella G., Lopes-Virella M. F. Atherogenesis and the humoral immune response to modified lipoproteins. Atherosclerosis. 2008. № 200. Р. 239–246.
Sogol Ashrafian B. S., Melodee L., Nugent M. A., Pippa M. Simpson, Denise Uyar. Impact of Body Mass Index on Pelvic Inflammatory Disease. Archives Obs Gynec. 2020. № 1(1). Р. 3.
Lareau S. M., Beigi R. H. Pelvic Inflammatory Disease and Tuboovarian Abscess. Infectious Disease Clinics of North America. 2008. № 22(4). Р. 693–708.
Ferrante A. W. Obesity-induced inflammation: A metabolic dialogue in the language of inflammation. Journal of Internal Medicine. 2007. № 262(4). Р. 408–414.
Weisberg S. P., Leibel R., Tortoriello D. V. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology. 2008. № 149(7). Р. 3549–3558.
Makki K., Froguel P., Wolowczuk I. Adipose Tissue in ObesityRelated Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflammation. 2013. Р. 1–12.
Song M., Ahn J. H., Kim H, Kim D. W., Lee T. K., Lee J. C., et al. Chronic high-fat diet-induced obesity in gerbils increases pro-inflammatory cytokines and mTOR activation, and elicits neuronal death in the striatum following brief transient ischemia. Neurochemistry International. 2018. № 9. Р. 0–1.
Schrager M. A., Metter E. J., Simonsick E., Ble A., Bandinelli S., Lauretani F., et al. Sarcopenic obesity and inflammation in the InCHIANTI study. Journal of Applied Physiology. 2006. № 102(3). Р. 919–925.
MacKintosh M. L., Derbyshire A. E., McVey R. J., Bolton J., Nickkho-Amiry M., Higgins C. L., et al. The impact of obesity and bariatric surgery on circulating and tissue biomarkers of endometrial cancer risk. International Journal of Cancer. 2018. № 144(3). Р. 641–650.
Geerlings S. E., Meiland R., van Lith E. C., Brouwer E. C., Gaastra W., Hoepelman A. I. Adherence of type 1-fimbriated Escherichia coli to uroepithelial cells: more in diabetic women than in control subjects. Diabetes care. 2002. № 25(8). Р. 1405–1409. https://doi.org/10.2337/diacare.25.8.1405