THE ROLE OF ARTERIAL HYPERTENSION IN THE COURSE OF PELVIC INFLAMMATORY DISEASE
DOI:
https://doi.org/10.32782/health-2025.1.1Keywords:
pelvic inflammatory disease, hypertension, pathogenesis, hormonal status, comorbidityAbstract
Our study aimed to highlight all the existing options for interacting with arterial hypertension and pelvic inflammatory diseases. A retrospective cohort study conducted in the United Kingdom found that pelvic inflammatory diseases can lead to an increase in the incidence of hypertension and diabetes. Short-term inflammation is necessary for tissue protection, and chronic and excessive activation of the innate immune system, its depletion leads to harmful maladaptation and chronic inflammation, which, as is known, in the cardiovascular system can most often cause arterial hypertension. Thus, a decrease in immunoresistance in hypertension is one of the provoking factors in the development of pelvic inflammatory diseases. It is known that interleukins and other cytokines are markedly increased in patients with pelvic inflammatory diseases, and an increase in cytokines can cause further endothelial dysfunction, which is one of the leading causes of hypertension. Infectious diseases provoke endothelial dysfunction and, accordingly, can act as initiators of arterial hypertension. It has been shown that Chlamydia trachomatis can affect the walls of arteries and cause inflammation.And, although numerous risk factors contribute to the onset and progression of hypertension, the role of inflammation, immunity, and oxidative stress has been convincingly confirmed by data from many laboratories around the world.Recurrent infection of the genitourinary system as one of the main causes of pelvic inflammatory disease has also been associated with the development of hypertension. The connection between pelvic inflammatory disease and hypertension has been proven, which may be supported by a complex modification of the intestinal, vaginal, and bladder microbiota due to hormonal changes.
References
Mather C., Stevens G., Retno Mahanani W., Ho J., Ma Fat D., Hogan D. et al. Mortality and burden of disease – World Health Organization (WHO), 2016. URL: http://www.who.int/gho/mortality_burden_disease/en/index.html (date of application: 02.10.2024).
Chockalingam A. Incidence de la Journee mondiale de l′hypertension arterielle. Canadian Journal of Cardiology. 2007. Vol. 23. № 7. Р. 517–519. https://doi.org/10.1016/s0828-282x(07)70795-x.
Артеріальна гіпертензія і атеросклероз. Здоров’я України. Інформація для спеціалістів охорони здоров’я – Health-ua. URL: https://www.health-ua.com/article/19179-arterialnaya-gipertenziya-i-ateroskleroz (date of application: 30.12.2024).
Pradhan A. D., Manson J. E., Rossouw J. E., Siscovick D. S, Mouton C. P, Rifai N., et al. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative observational study. JAMA. 2002. № 288. Р. 980–987.
Shoenfeld Y., Gerli R., Doria A., Matsuura E., Cerinic M. M., Ronda N., Jara L. J. et al. Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation. 2005. № 112. Р. 3337–3347.
Okoth K., Thomas G. N., Nirantharakumar K., Adderley N. Risk of cardiometabolic outcomes among women with a history of pelvic inflammatory disease: a retrospective matched cohort study from the UK. BMC Womens Health. 2023. № 23. Р. 80.
Гичка Н. М., Щерба О. А., Ластовецька Л. Д. Запальні захворювання органів малого таза: сучасні уявлення про етіологію, принципи діагностики та лікування. Здоров’я жінки. 2020. № 2. Р. 7–14.
Matzinger P. The danger model: a renewed sense of self. Science. 2002. № 296. № 5566. Р. 301–305.
Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006. № 124. № 4. Р. 783–801.
Takeuchi O. Akira S. Pattern recognition receptors and inflammation. Cell. 2010. № 140. № 6. Р. 805–820.
Schroder K., Tschopp J. The inflammasomes. Cell. 2010. № 140. № 6. Р. 821–832.
McCarthy C. G., Goulopoulou S., Wenceslau C. F., Spitler K., Matsumoto T., Webb R. C. Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol. 2014. № 306. № 2. Р. H184–196.
Kelley N., Jeltema D., Duan Y., He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019. № 20. № 13.
Richter H. E., Holley R. L., Andrews W. W., Owen J., Miller K. B. The association of interleukin 6 with clinical and laboratory parameters of acute pelvic inflammatory disease. Am J Obstet Gynecol. 1999. № 181. Р. 940–944.
Pradhan A. D., Manson J. E., Rossouw J. E., Siscovick D. S., Mouton C. P., Rifai N., et al. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative observational study. JAMA. 2002. № 288. Р. 980–987.
Libby P., Ridker P. M. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004. № 116. Р. 9S–16S.
Prasad Abhiram, Zhu Jianhui, Halcox Julian P. J., Waclawiw Myron A., Epstein Stephen E., Quyyumi Arshed A. Predisposition to atherosclerosis by infections: Role of endothelial dysfunction. Circulation. 2002. № 106. Р. 184–190.
Memon R. A., Staprans I., Noor M., Holleran W. M., Uchida Y., Moser A. H., et al. Infection and inflammation induce LDL oxidation in vivo. Arterioscler Thromb Vasc Biol. 2000. № 20. Р. 1536–1542.
Virella G., Lopes-Virella M. F. Atherogenesis and the humoral immune response to modified lipoproteins. Atherosclerosis. 2008. № 200. Р. 239–246.
Nagarajan U. M., Nagarajan U. M., Sikes J. D., Burris R. L., Jha R., Popovic B., et al. Genital Chlamydia infection in hyperlipidemic mouse models exacerbates atherosclerosis. Atherosclerosis. 2019. № 290. Р. 103–110. doi: 10.1016/j. atherosclerosis.2019.09.021.
Epstein S. E., Zhou Y. F., Zhu J. Infection and atherosclerosis: emerging mechanistic paradigms. Circulation. 1999. № 100. Р. e20–е28.
Kamat N. V., Thabet S. R., Xiao L., Saleh M. A., Kirabo A., Madhur M. S., et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice. Hypertension. 2015. № 65. № 3. Р. 569–576. doi: 10.1161/HYPERTENSIONAHA.114.04975.
Vinh A., Chen W., Blinder Y., Weiss D., Taylor W. R., Goronzy J. J., et al. Inhibition and genetic ablation of the B7/ CD28 T-cell costimulation axis prevents experimental hypertension. Circulation. 2010. № 122. № 24. Р. 2529–2537. doi: 10.1161/CIRCULATIONAHA.109.930446.
Wu K. L., Chan S. H., Chan J. Y. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflamm. 2012. № 9. Р. 212. doi: 10.1186/1742-2094-9- 212.
Wang H., Yu M., Ochani M., Amella C. A., Tanovic M., Susarla S., et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003. № 421. № 6921. Р. 384–388. doi: 10.1038/nature01339.
Wenzel P., Knorr M., Kossmann S., Stratmann J., Hausding M., Schuhmacher S., et al. Lysozyme m-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011. № 124. № 12. Р. 1370–1381. doi: 10.1161/CIRCULATIONAHA.111.034470.
Siedlinski M., Jozefczuk E., Xu X., Teumer A., Evangelou E., Schnabel R. B., et al. White blood cells and blood pressure: A mendelian randomization study. Circulation. 2020. № 141. Р. 1307–1317. doi: 10.1161/CIRCULATIONAHA.119.045102.
Rizzoni D., De Ciuceis C., Szczepaniak P., Paradis P., Schiffrin E. L., Guzik T. J. Immune system and microvascular remodeling in humans. Hypertension. 2022. № 79. № 4. Р. 691–705. doi: 10.1161/HYPERTENSIONAHA.121.17955.
Muñoz M., López-Oliva M. E., Rodríguez C., Martínez M. P., Sáenz-Medina J., Sánchez A., et al. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Redox Biol. 2020. № 28. Р. 101330. doi: 10.1016/j.redox.2019.101330.
Cagnacci A., Xholli A., Sclauzero M., Venier M., Palma F., Gambacciani M., et al. Vaginal atrophy across the menopausal age: results from the ANGEL study. Climacteric. 2019. Vol. 22. № 1. Р. 85–89.
Cagnacci A., Gambera A., Bonaccorsi G., Xholli A., ANGEL study. Relation between blood pressure and genitourinary symptoms in the years across the menopausal age. Climacteric. 2022. № 25. № 4. Р. 395–400. doi:10.1080/1369713 7.2021.2006176.
Palma F., Xholli A., Cagnacci A. The most bothersome symptom of vaginal atrophy: Evidence from the observational AGATA study. Maturitas. 2018. № 108. Р. 18–23.
Cagnacci A., Sclauzero M., Meriggiola C., Xholli A., ANGEL study. Lower urinary tract symptoms and their relation to vaginal atrophy in women across the menopausal age span. Results from the ANGEL multicentre observational study. Maturitas. 2020. № 140. Р. 8–13.
Cannoletta M., Cagnacci A. Modification of blood pressure in post-menopausal women: role of hormone replacement therapy. Int J Womens Health. 2014. № 11. Р. 745–757.
Graham M. E., Herbert W. G., Song S. D., Raman H. N., Zhu J. E., Gonzalez P. E., et al. Gut and vaginal micro-biomes on steroids: implications for women’s health. Trends Endocrinol Metab. 2021. № 32. Р. 554–565.
Huang J., Shan W., Li F., Wang Z., Cheng J., Lu F., et al. Fecal microbiota transplantation mitigates vaginal atrophy in ovariectomized mice. Aging (Albany NY). 2021. № 13. № 5. Р. 7589–7607.
Guo Y., Li X., Wang Z., Yu B. Gut microbiota dysbiosis in human hypertension: a systematic review of observational studies. Front Cardiovasc Med. 2021. № 8. Р. 650227.