СLINICAL AND LABORATORY CHARACTERISTICS OF LOWER EXTREMITY ARTERIAL DISEASE IN THE CONDITIONS OF COMORBIDITY

Authors

DOI:

https://doi.org/10.32782/health-2025.2.5

Keywords:

atherosclerosis of the lower extremities, clinical and laboratory indicators, comorbidity, diabetes mellitus, hypertension, obesity, chronic obstructive pulmonary disease, uric acid

Abstract

Comorbidity is not only a global medical issue that determines the individual prognosis for each patient but also has widespread social consequences at the population level. This is particularly important for defining diagnostic and therapeutic approaches to patient management. Lower extremity arterial disease (LEAD) represents a serious medical and social problem. In patients with hypertension, it is accompanied by more pronounced hemodynamic disturbances, lipid profile abnormalities, and vascular structural changes, necessitating a comprehensive approach to diagnosis, treatment, and risk factor control. Furthermore, it has been observed that the prevalence of LEAD increases with a more significant decline in glomerular filtration rate (GFR). Logistic regression analysis has shown that uric acid and GFR are independent risk factors for diabetic LEAD. Endothelial dysfunction in diabetic nephropathy affects not only the renal capillaries but also the vascular system as a whole. Plasma proteins can penetrate through damaged endothelial cells, triggering vascular changes and promoting the progression of atherosclerosis. Elevated TNF levels in patients with LEAD are associated with worsening tissue trophism in the lower extremities, endothelial dysfunction, and overall physical weakness, often leading to the development of cachexia. TNF, also known as «cachectin», predicts poor prognosis in systemic atherosclerosis and circulatory disorders. Thus, LEAD is a disease with a pronounced systemic inflammatory component, similar to chronic obstructive pulmonary disease, and the evaluation of pro-inflammatory markers could be used to predict disease progression, assess the risk of complications, and stratify patients by severity. Therefore, the combination of these pathologies necessitates a comprehensive approach to diagnosis, prevention, and treatment, aimed at addressing vascular, metabolic, and respiratory disorders.

References

Dardik A., Curci J. A., Tang G. L., Hedin U., Sadaghianloo N., Roy T. L., Dalman R. L. We need more vascular research. JVS Vasc Sci. 2023. № 21(4). Р. 100132. doi: 10.1016/j.jvssci.2023.100132

Lawall H., Huppert P., Espinola-Klein C., Zemmrich C. S., Ruemenapf G. German guideline on the diagnosis and treatment of peripheral artery disease – a comprehensive update 2016. Vasa. 2017. № 46(2). Р. 79–86. doi: 10.1024/0301-1526/ a000603

Berkowitz S. D., Bauersachs R. M., Szarek M., Nehler M. R., Debus E. S., Patel M. R., at. al. Prevention of arterial and venous thrombotic events in symptomatic peripheral arterial disease patients after lower extremity revascularization in the VOYAGER PAD trial: Dual anticoagulant/antiplatelet regimen vs antiplatelet therapy alone. J Thromb Haemost. 2022. № 20(5). Р. 1193–1205. doi: 10.1111/jth.15673

Aboyans V., Ricco J.-B., Bartelink M.-L. E. L. Bjorck M., Brodmann M., Cohnert T., et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Rev Esp Cardiol (Engl Ed). 2018. № 71(2). Р. 111. doi: 10.1016/j.rec.2017.12.014

Obliterating atherosclerosis of the vessels of the lower extremities – Medhelsi. Medhelsi. URL: https://medhelsi.com.ua/en/services/obliterating-atherosclerosis-of-the-vessels-of-the-lower-extremities/art98 (date of access: 07.03.2025).

Cosentino F., Grant P. J., Aboyans V. Bailey C. J., Ceriello A., Delgado V., et al. 2019 ESC Guidelines on diabetes, pre- diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020. № 41(2). Р. 255–323. doi: 10.1093/eurheartj/ehz486

Schramm K., Rochon P. J. Gender Differences in Peripheral Vascular Disease. Semin Intervent Radiol. 2018. № 35(1). Р. 9–16. doi: 10.1055/s-0038-1636515

Hap K., Biernat K., Konieczny G. J. Patients with Diabetes Complicated by Peripheral Artery Disease: the Current State of Knowledge on Physiotherapy Interventions. Diabetes Res. 2021. № 10. Р. 5122494. doi: 10.1155/2021/5122494

Quax P. H. A., Deindl E. The Intriguing World of Vascular Remodeling, Angiogenesis, and Arteriogenesis. International journal of molecular sciences. 2024. № 25(12). Р. 6376. https://doi.org/10.3390/ijms25126376

Parma L., Baganha F., Quax P. H. A., de Vries M. R. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur. J. Pharmacol. 2017. № 816. Р. 107–115. doi: 10.1016/j.ejphar.2017.04.028

Reinecke H., Unrath M., Freisinger E., Bunzemeier H., Meyborg M., Lüders F., et al. Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence. European heart journal. 2015. № 36(15). Р. 932–938. doi.org/10.1093/eurheartj/ehv006

Бабінець Л. С., Білочицька В. В. Клініко-лабораторні та інструментальні особливості гіпертонічної хвороби у поєднанні з облітеруючим атеросклерозом нижніх кінцівок в амбулаторній практиці. Здоров`я суспільства. 2019. Т. 8. № 1. С. 30–35 doi:10.22141/2306-2436.8.1.2019.172616

Zhang Z., Tao Н., Chen В. Changes of chemokine chemerin expression in perivascular adipose tissue of obese rats with atherosclerosis. Progress in Modern Biomedicine. 2021. № 21. Р. 401–406.

Gabriela A. T., Lorena C., Vasile N., Olimpia P. I., Claudia L. C., Dan T. R., et al. Risk factors of subclinical atherosclerosis in obesity and overweight. JPMA. The Journal of the Pakistan Medical Association. 2020. № 70(5). Р. 840–844. doi: 10.5455/JPMA.12075

Talavera-Garcia E., Delgado-Lista J., Garcia-Rios A., Delgado-Casado N., Gomez-Luna P., Gomez-Garduño A., et al. Influence of Obesity and Metabolic Disease on Carotid Atherosclerosis in Patients with Coronary Artery Disease (CordioPrev Study). PloS one. 2016. № 11(4). Р. e0153096. doi:10.1371/journal.pone.0153096

Rosenson R. S., Davidson M. H., Hirsh B. J., Kathiresan S., Gaudet, D. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. Journal of the American College of Cardiology. 2014. № 64(23). Р. 2525–2540. doi:10.1016/j.jacc.2014.09.042

Karonova T., Grineva E., Belyaeva O., Bystrova A., Jude E.B., Andreeva A., Kostareva A., Pludowski P. Relationship Between Vitamin D Status and Vitamin D Receptor Gene Polymorphisms With Markers of Metabolic Syndrome Among Adults. Frontiers in endocrinology. 2018. № 9. Р. 448. doi:10.3389/fendo.2018.00448

Ferreira P. P., Cangussu L., Bueloni-Dias F. N., Orsatti C. L., Schmitt E. B., Nahas-Neto J., Nahas E. A. P. Vitamin D supplementation improves the metabolic syndrome risk profile in postmenopausal women. Climacteric : the journal of the International Menopause Society. 2020. № 23(1). Р. 24–31. doi:10.1080/13697137.2019.1611761

Klein L. W. Pathophysiologic Mechanisms of Tobacco Smoke Producing Atherosclerosis. Current cardiology reviews. 2022. № 18(6). Р. e110422203389. doi:10.2174/1573403X18666220411113112

Yang M., Liu J., Zhou X., Ding H., Xu J., Yang B., et al. Correlation Analysis between Serum Vitamin D Levels and Lower Extremity Macrovascular Complications in Individuals with Type 2 Diabetes Mellitus. Journal of diabetes research. 2019. Р. 4251829. doi:10.1155/2019/4251829.

Melamed M. L., Muntner P., Michos E. D., Uribarri J., Weber C., Sharma J., Raggi P. Serum 25-hydroxyvitamin D levels and the prevalence of peripheral arterial disease: results from NHANES 2001 to 2004. Arteriosclerosis, thrombosis, and vascular biology. 2016. № 28(6). Р. 1179–1185. doi:10.1161/ATVBAHA.108.165886

Fahrleitner-Pammer A., Obernosterer A., Pilger E., Dobnig H., Dimai H. P., Leb G., Kudlacek S., Obermayer- Pietsch, B.M. Hypovitaminosis D, impaired bone turnover and low bone mass are common in patients with peripheral arterial disease. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005. № 16(3). Р. 319–324. doi:10.1007/ s00198-004-1693-3

Zhou W., Ye S. D. Relationship between serum 25-hydroxyvitamin D and lower extremity arterial disease in type 2 diabetes mellitus patients and the analysis of the intervention of vitamin D. Journal of diabetes research. 2015. Р. 815949. doi:10.1155/2015/815949

Pittas A. G., Dawson-Hughes B., Li T., Van Dam R. M., Willett W. C., Manson J. E., Hu F. B. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes care. 2006. № 29(3). Р. 650–656. doi:10.2337/diacare.29.03.06. dc05-1961

Legarth C., Grimm D., Wehland M., Bauer J., Krüger M. The Impact of Vitamin D in the Treatment of Essential Hypertension. International journal of molecular sciences. 2008. № 19(2). Р. 455. doi:10.3390/ijms19020455

Polidoro L., Properzi G., Marampon F., Gravina G.L., Festuccia C., Di Cesare E., et al. Vitamin D protects human endothelial cells from H₂O₂ oxidant injury through the Mek/Erk-Sirt1 axis activation. Journal of cardiovascular translational research. 2013. № 6(2). Р. 221–231. doi:10.1007/s12265-012-9436-x

Riek A. E., Oh J., Bernal-Mizrachi C. 1,25(OH)2 vitamin D suppresses macrophage migration and reverses atherogenic cholesterol metabolism in type 2 diabetic patients. The Journal of steroid biochemistry and molecular biology. 2013. № 136. Р. 309–312. doi:10.1016/j.jsbmb.2012.12.019

Shankman L. S., Gomez D., Cherepanova O. A., Salmon M., Alencar G. F., Haskins R. M., et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nature medicine. 2015. № 21(6). Р. 628–637. doi:10.1038/nm.3866

Zhou W., Wang W., Yuan X.J., Xiao C.C., Xing Y., Ye S.D., Liu Q. The Effects of RBP4 and Vitamin D on the Proliferation and Migration of Vascular Smooth Muscle Cells via the JAK2/STAT3 Signaling Pathway. Oxidative medicine and cellular longevity. 2022. Р. 3046777. doi:10.1155/2022/3046777

Rajasree S., Umashankar P. R., Lal A. V., Sarma P. S., Kartha, C. C. 1,25-dihydroxyvitamin D3 receptor is upregulated in aortic smooth muscle cells during hypervitaminosis D. Life sciences. 2002. № 70(15). Р. 1777–1788. doi:10.1016/ s0024-3205(02)01473-x

Weitz J. I., Byrne J., Clagett G. P., Farkouh M. E., Porter J. M., Sackett D. L., et al. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation. 1996. № 94(11). Р. 3026–3049. doi:10.1161/ 01.cir.94.11.3026

Dormandy J. A., Rutherford R. B. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg. 2000. № 31(1 Pt 2). Р. S1–296.

American Diabetes Association Peripheral arterial disease in people with diabetes. Diabetes Care. 2003. № 26. Р. 3333–3341.

Takahara M., Kaneto H., Iida O., Gorogawa S., Ikeda M. High prevalence of glucose intolerance in Japanese patients with peripheral arterial disease. Diabetes Res Clin Pract. 2011. № 91(1). Р. e24–е25.

Jude E. B., Oyibo S. O., Chalmers N., Boulton, A. J. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care. 2001. № 24. Р. 1433–1437.

Althouse A. D., Abbott J. D., Forker A. D., et al. Risk factors for incident peripheral arterial disease in type 2 diabetes: results from the Bypass Angioplasty Revascularization Investigation in type 2 Diabetes (BARI 2D) Trial. Diabetes Care 2014;37:1346–52.

Xu J., Wang G., Fu D., Su N., Wang L., Gao F., Guo N. High-resolution color Doppler ultrasound examination and related risk factor analysis of lower extremity vasculopathy in type 2 diabetes patients. Genet Mol Res. 2015. № 14. Р. 3939–3947.

Yoo J. H., Park J. E., Hong K. P., Lee S. H., Kim D. K., Lee W. R., Park S. C. Moderate hyperhomocyst(e)inemia is associated with the presence of coronary artery disease and the severity of coronary atherosclerosis in Koreans. Thromb Res. 1999. № 94. Р. 45–52.

Kanbay M., Yilmaz M. I., Sonmez A., Solak Y., Saglam M., Cakir E., et al. Serum uric acid independently predicts cardiovascular events in advanced nephropathy. Am J Nephrol. 2012. № 36. Р. 324–331.

Chuengsamarn S., Rattanamongkolgul S., Jirawatnotai S. Association between serum uric acid level and microalbuminuria to chronic vascular complications in Thai patients with type 2 diabetes. J Diabetes Complications. 2014. № 28. Р. 124–129.

Zhang L., Zhou J., Li Q., Yu H. Y., Li M., Zhang F., Bao Y. Q., Jia W. P. Zhonghua yi xue za zhi. 2010. № 90(10). Р. 653–657.

Lai Y. J., Hu H. Y., Lin C. H., Lee S. T., Kuo S. C., Chou P. Incidence and risk factors of lower extremity amputations in people with type 2 diabetes in Taiwan, 2001–2010. Journal of diabetes. 2015. № 7(2). Р. 260–267. doi:10.1111/1753-0407.12168

Balogh O., Péntek M., Gulácsi L., Farkas K., Járai Z., Landi A., Pécsvárady Z., Brodszky V. Magyarországi perifériás verőérbetegek életminőség és betegségteher vizsgálatának eredményei [Quality of life and burden of disease in peripheral arterial disease: a study among Hungarian patients]. Orvosi hetilap. 2013. № 154(12). Р. 464–470. doi:10.1556/ OH.2013.29567

Yu J. H., Hwang J. Y., Shin M. S., Jung C. H., Kim E. H., Lee S. A., et al. The prevalence of peripheral arterial disease in Korean patients with type 2 diabetes mellitus attending a university hospital. Diabetes Metab J. 2011. № 35. Р. 543–550.

Yap Y. S., Chuang H. Y., Chien C. M., Tai Y. K. et al. Relationship between peripheral artery disease and combined albuminuria and low estimated glomerular filtration rate among elderly patients with type 2 diabetes mellitus. Diab Vasc Dis Res. 2014. № 11. Р.41–47.

Figuero E., Lindahl C., Marin M.J., Renvert, S., Herrera, D., Ohlsson, O., et al. Quantification of periodontal pathogens in vascular, blood, and subgingival samples from patients with peripheral arterial disease or abdominal aortic aneurysms. J. Periodontol. 2014. № 85. Р. 1182–1193.

Cohen J. I., Bartlett J. A., Corey G. R. Extra-intestinal manifestations of salmonella infections. Medicine (Baltimore). 1987. № 66. Р. 349–388.

Pavithran K. Syphilitic peripheral vascular disease: a case report. Indian J Sex Transm Dis. 1989. № 10. Р. 79–81.

Chetty R., Batitang S., Nair R. Large artery vasculopathy in HIV-positive patients: another vasculitic enigma. Hum Pathol. 2000. № 31. Р. 374–379.

Brassington K., Selemidis S., Bozinovski S., Vlahos R. Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics. Clin Sci (Lond). 2022. Vol. 31. № 136(6). Р. 405–423. doi:10.1042/CS20210835

Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts. 2022. Vol. 21. № 13(1). Р. 34–54. doi:10.1515/bmc-2022-0001

Søyseth V., Kononova N., Neukamm A., Holmedahl N. H., Hagve T. A., Omland T. et al. Systemic inflammation induced by exacerbation of COPD or pneumonia in patients with COPD induces cardiac troponin elevation. BMJ Open Respir Res. 2021. № 8(1). Р. e000997. doi:10.1136/bmjresp-2021-000997

Thomsen M., Ingebrigtsen T. S., Marott J. L., Dahl M., Lange P., Vestbo J., et al. Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. JAMA. 2013. Vol. 12. № 309(22). Р. 2353–2361. doi:10.1001/jama.2013.5732

Pecci R., De La Fuente Aguado J, Sanchez Conde P., Corbacho Abelaira, M. Peripheral arterial disease in patients with chronic obstructive pulmonary disease. Int Angiol. 2012. № 31(5). Р. 444–453.

Terzikhan N., Lahousse L., Verhamme K. M. C., Franco O. H., Ikram A. M., Stricker B. et al. COPD is associated with an increased risk of peripheral artery disease and mortality. ERJ Open Res. 2018. Vol. 21/ № 4(4). Р. 00086–02018. doi:10.1183/23120541.00086-2018

Liao K. M., Kuo L. T., Lu H. Y. Increased risk of peripheral arterial occlusive diseases in patients with chronic obstructive pulmonary disease: a nationwide study in Taiwan. Int J Chron Obstruct Pulmon Dis. 2019. Vol. 4. № 14. Р. 1455–1464. doi:10.2147/COPD.S202029

Barrecheguren M., Miravitlles M. COPD heterogeneity: implications for management. Multidiscip Respir Med. 2016. Vol. 17. № 11. Р. 14. doi:10.1186/s40248-016-0053-4

Papaporfyriou A., Bartziokas K., Gompelmann D., Idzko M., Fouka E., Zaneli S., et al. Cardiovascular Diseases in COPD: From Diagnosis and Prevalence to Therapy. Life (Basel). 2023. Vol. 31. № 13(6). Р. 1299. doi: 10.3390/life13061299

Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts. 2022. Vol. 21. № 13(1). Р. 34–54.

Tsutsumi T., Nakano D., Kawaguchi M., Hashida R., Yoshinaga S., Takahashi H. et al. MAFLD associated with COPD via systemic inflammation independent of aging and smoking in men. Diabetol Metab Syndr. 2022. Vol. 16. № 14(1). Р. 115. doi:10.1186/s13098-022-00887-w

Ghelli F., Panizzolo M., Garzaro G., Squillacioti G., Bellisario V., Colombi N. et al. Inflammatory Biomarkers in Exhaled Breath Condensate: A Systematic Review. Int J Mol Sci. 2022 Vol. 29. № 23(17). Р. 9820. doi:10.3390/ijms23179820

Тousoulis D., Oikonomou E., Economou E.K., Crea F., Kaski J.C. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J. 2016 Vol. 7. № 37(22). Р. 1723–1732. doi:10.1093/eurheartj/ehv759

Published

2025-06-30

Issue

Section

MEDICINE