COMPARATIVE STUDY OF THE CONTENT OF THE MAIN GROUPS OF BIOLOGICALLY ACTIVE SUBSTANCES IN PHYTOCOMPLEXES FOR NORMALIZATION OF THE FUNCTIONAL STATE OF FEMALE REPRODUCTIVE ORGANS
DOI:
https://doi.org/10.32782/health-2025.2.13Keywords:
phytocomplex, herbal medicine, quantitative content, phytoestrogens, menstrual disorders, women’s reproductive health, hormonal balanceAbstract
The aim of the work. A comparative study of the quantitative content of key biologically active compounds in phytocomplexes aimed at normalizing the functional state of female reproductive organs from various manufacturers available in the domestic pharmaceutical market.The study was conducted on a group of phytocomplexes derived from Symplocosum and Asparagus, sourced from different manufacturers: Normocycle (Organosin Ltd), Femicycle (Ananta Medicare Ltd), and Tazalok (Pro- Pharma). The quantitative determination of the main groups of biologically active substances was performed using UV spectrophotometry. This included measuring the amount of phenolic compounds (expressed as gallic acid), flavonoids (expressed as rutin), and hydroxycinnamic acids (expressed as chlorogenic acid).In terms of phenolic compounds, the levels in Normocycle and Tazalok were similar, although Normocycle showed a slightly higher content. The difference between Normocycle and Femicycle was more pronounced. Tazalok had the highest concentration of flavonoids, being nearly 1.7 times greater than that found in both Normocycle and Femicycle. Additionally, Normocycle contained 20 % more hydroxycinnamic acids than Tazalok, and more than 1.7 times the amount found in Femicycle. Overall, in terms of the quantitative content of the total active compounds responsible for the pharmacological effects, Normocycle and Tazalok outperformed Femicycle in a single dose of the phytocomplex. The analysis of the quantitative content of bioactive substances responsible for pharmacological effects in a single dose of the studied herbal medicines revealed that Normocycle contains the highest levels of phenolic compounds and hydroxycinnamic acids. However, it has a lower total content of flavonoids compared to Tazalok. Both Normocycle and Tazalok significantly surpass Femicycle in terms of the quantity of active components present in one dose of these phytocomplexes.
References
Yeung A. W. K., Heinrich M., Kijjoa A. et al. The ethnopharmacological literature: An analysis of the scientific landscape. Journal of Ethnopharmacology. 2020. Vol. 250. P. 112414. DOI: https://doi.org/10.1016/j.jep.2019.112414
Santini A., Novellino E. Nutraceuticals: Beyond the diet before the drugs. Current Bioactive Compounds. 2014. Vol. 10. P. 1–12. DOI: https://doi.org/10.2174/1573407210666140113120031
ACOG Committee Opinion No. 651: Menstruation in Girls and Adolescents: Using the Menstrual Cycle as a Vital Sign. Obstetrics & Gynecology. 2015. Vol. 126, № 6. P. e143–e146. DOI: https://doi.org/10.1097/AOG.0000000000001057
Acharya N., Acharya S., Shah U. et al. A comprehensive analysis on Symplocos racemosa Roxb.: Traditional uses, botany, phytochemistry and pharmacological activities. Journal of Ethnopharmacology. 2016. Vol. 181. P. 236–251. DOI: https://doi.org/10.1016/j.jep.2016.01.043
Tamir S., Eizenberg M., Somjen D. et al. Estrogen-like activity of glabrene and other constituents isolated from licorice root. Journal of Steroid Biochemistry and Molecular Biology. 2001. Vol. 78, № 3. P. 291–298. DOI: https://doi.org/10.1016/ S0960-0760(01)00047-0
Akhtar S., Gupta A.K., Naik B. et al. Exploring pharmacological properties and food applications of Asparagus racemosus (Shatavari). Food Chemistry: Advances. 2024. Vol. 4. P. 100689. DOI: https://doi.org/10.1016/j.focha.2024.100689
Ghanbarzadeh-Ghashti N., Ghanbari-Homaie S., Shaseb E. et al. The effect of Curcumin on metabolic parameters and androgen level in women with polycystic ovary syndrome: A randomized controlled trial. BMC Endocrine Disorders. 2023. Vol. 23. № 1. P. 40. DOI: https://doi.org/10.1186/s12902-023-01295-5
Державна фармакопея України : у 3-х т. / ДП «Український науковий фармакопейний центр якості лікарських засобів». 2-е вид. Харків : Український науковий фармакопейний центр якості лікарських засобів, 2015. Т. 1. 1128 с.
Маслов О. Ю. Фітохімічне вивчення та стандартизація лікарських засобів антиоксидантної дії з листя зеленого чаю : дис.... докт. філософії : 226. Харків, 2022. 200 с.
Alu’datt M. H., Rababah T., Alhamad M. N., et al. A review of phenolic compounds in oil-bearing plants: distribution, identification and occurrence of phenolic compounds. Food Chemistry. 2017. Vol. 218. P. 99–106. DOI: https://doi.org/ 10.1016/j.foodchem.2016.09.029
Liu W., Cui X., Zhong Y. et al. Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacological Research. 2023. Vol. 193. P. 106812. DOI: https://doi.org/10.1016/ j.phrs.2023.106812
Rahman M. M., Rahaman M. S., Islam M. R. et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules. 2021. Vol. 27(1). P. 233. DOI: https://doi.org/10.3390/molecules27010233
Kurzer M. S., Xu X. Dietary phytoestrogens. Annual Review of Nutrition. 1997. Vol. 17. P. 353–381. DOI: https://doi.org/ 10.1146/annurev.nutr.17.1.353
Branca F., Lorenzetti S. Health Effects of Phytoestrogens Diet Diversification and Health Promotion. 2005. Vol. 57. P. 100–111. DOI: https://doi.org/10.1159/000083773
Domínguez-López I., Yago-Aragón M., Salas-Huetos A. et al. Effects of dietary phytoestrogens on hormones throughout a human lifespan: A review. Nutrients. 2020. Vol. 12. P. 2456. DOI: https://doi.org/10.3390/nu12082456
Saarinen N. M., Bingham C., Lorenzetti S. et al. Tools to evaluate estrogenic potency of dietary phytoestrogens: A consensus paper from the EU Thematic Network “Phytohealth” (QLKI-2002-2453). Genes & Nutrition. 2006. Vol. 1. P. 143–158. DOI: https://doi.org/10.1007/BF02829950
Yildiz F. Phytoestrogens in Functional Foods. New York : CRC Press Taylor & Francis Ltd., 2005. 336 p.
Smeriglio A., Trombetta D., Marcoccia D. et al. Intracellular Distribution and Biological Effects of Phytochemicals in a Sex Steroid-Sensitive Model of Human Prostate Adenocarcinoma. Anticancer Agents in Medicinal Chemistry. 2014. Vol. 14. P. 1386–1396. DOI: https://doi.org/10.2174/1871520614666141021113040
Křížová L., Dadáková K., Kašparovská J., Kašparovský T. Isoflavones. Molecules. 2019. Vol. 24(6). P. 1076. DOI: https://doi.org/10.3390/molecules24061076
Baber R. J. Phytoestrogens in health: The role of isoflavones. Isoflavones: Chemistry, Analysis, Function and Effects / Preedy V. R. Cambridge : RCS Publishing, 2013. P. 3–13.
Messina M., Kucuk O., Lampe J. W. An overview of the health effects of isoflavones with an emphasis on prostate cancer risk and prostate-specific antigen levels. Journal of AOAC International. 2006. Vol. 89. P. 1121–1134. DOI: https://doi.org/10.1093/jaoac/89.4.1121
Messina M., Hilakivi-Clarke L. Early intake appears to be the key to the proposed protective effects of soy intake against breast cancer. Nutrition and Cancer. 2009. Vol. 61. P. 792–798. DOI: https://doi.org/10.1080/01635580903285015
Shu X. O., Zheng Y., Cai H. et al. Soy food intake and breast cancer survival. The Journal of the American Medical Association. 2009. Vol. 302. P. 2437–2443. DOI: https://doi.org/10.1001/jama.2009.1783
Hoie L. H., Guldstrand M., Sjoholm A. et al. Cholesterol-lowering effects of a new isolated soy protein with high levels of nondenaturated protein in hypercholesterolemic patients. Advances in Therapy. 2007. Vol. 24. P. 439–447. DOI: https://doi.org/10.1007/BF02849913
Ye Y.-B., Tang X.-Y., Verbruggen M. A., Su Y.-X. Soy isoflavones attenuate bone loss in early postmenopausal Chinese women: A single-blind randomized, placebo-controlled trial. European Journal of Nutrition. 2006. Vol. 45. P. 327–334. DOI: https://doi.org/10.1007/s00394-006-0605-5
Lethaby A. E., Brown J., Marjoribanks J. et al. Phytoestrogens for vasomotor menopausal symptoms. Cochrane Database of Systematic Reviews. 2007. CD001395. DOI: https://doi.org/10.1002/14651858.CD001395.pub3
Farquhar C. M., Marjoribanks J., Lethaby A. et al. Long term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database of Systematic Reviews. 2005 [publ. 2015]. CD004143. DOI: https://doi.org/10.1002/14651858.CD004143.pub3
Wang Y., Man Gho W., Chan F. L. et al. The red clover (Trifolium pratense) isoflavone biochanin A inhibits aromatase activity and expression. British Journal of Nutrition. 2008. Vol. 99. P. 303–310. DOI: https://doi.org/10.1017/S0007114507791899
Vitale D. C., Piazza C., Melilli B. et al. Isoflavones: Estrogenic activity, biological effect and bioavailability. European Journal of Drug Metabolism and Pharmacokinetics. 2013. Vol. 38. P. 15–25. DOI: https://doi.org/10.1007/s13318-012-0112-y
Evers N. M., van de Klundert T. M. C., van Aesch Y .M. et al. Human T47D-ERβ breast cancer cells with tetracycline-dependent ERβ expression reflect ERα/ERβ ratios in rat and human breast tissue. Toxicology In Vitro. 2013. Vol. 27. P. 1753–1761. DOI: https://doi.org/10.1016/j.tiv.2013.05.007
Liu Y., Hassan S., Kidd B.N. et al. Ethylene signaling is important for isoflavonoid-mediated resistance to Rhizoctonia solani in roots of Medicago truncatula. Molecular Plant-Microbe Interactions. 2017. Vol. 30. P. 691–700. DOI: https://doi.org/ 10.1094/MPMI-12-16-0250-R
Mueller S. O., Simon S., Chae K. et al. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor α (ERα) and ERβ in human cells. Toxicological Sciences. 2004. Vol. 80. P. 14–25. DOI: https://doi.org/10.1093/toxsci/kfh147
Sova M., Saso L. Natural sources, pharmacokinetics, biological activities and health benefits of hydroxycinnamic acids and their metabolites. Nutrients. 2020. Vol. 12(8). P. 2190. DOI: https://doi.org/10.3390/nu12082190
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Дмитро Віталійович Литкін, Ілля Миколайович Подольський

This work is licensed under a Creative Commons Attribution 4.0 International License.