CORRELATION ANALYSIS OF RADIOLOGICAL AND PATHOHISTOLOGICAL CHARACTERISTICS OF BENIGN AND MALIGNANT BREAST TUMORS

Authors

DOI:

https://doi.org/10.32782/health-2025.3.6

Keywords:

breast tumors, digital mammography, pathohistological examination, BI-RADS, ACR, differential diagnosis

Abstract

Breast tumors represent a significant challenge in modern medicine due to their high prevalence and clinical heterogeneity. Accurate differentiation between benign and malignant neoplasms is critically important for timely and effective treatment. Despite advances in imaging and morphological techniques, the integration of data from these modalities remains the cornerstone of high-precision diagnostics.Objective. To compare the radiological (based on digital mammography using the BI-RADS and ACR classifications) and pathohistological criteria of benign and malignant breast tumors in order to identify diagnostic markers that improve the accuracy of their differentiation and assess the diagnostic capabilities.Materials and Methods. This study involved a retrospective analysis of 145 digital mammograms (115 benign and 30 malignant) along with corresponding histological samples obtained through biopsy or surgical intervention.Mammographic images were evaluated according to the BI-RADS and ACR classifications. Pathohistological examination was conducted using standard methodology, with verification of histological type and degree of invasiveness in accordance with the WHO Classification of Breast Tumours, 5th Edition. Results. The BI-RADS distribution analysis showed that the largest proportions were BI-RADS category 2 (24.1%) and category 6 (20.7%). According to the ACR classification, types B (53.7%) and A (28.9%) were predominant. A correlation was identified between increased breast density according to ACR (particularly types C and D) and a higher frequency of BI-RADS categories 4–6, indicating challenges in visualizing pathologies in dense breast tissue.Radiologically, benign tumors were often characterized by well-defined, smooth margins and regular shapes with macrocalcifications (such as «popcorn» type), whereas malignant tumors typically exhibited irregular, spiculated margins, irregular shapes, high density, and amorphous microcalcifications.Pathohistologically, invasive carcinoma of no special type accounted for 73% of malignant lesions, correlating with spiculated margins and desmoplastic stromal reaction.Conclusions. The combined use of digital mammography and pathohistological examination significantly improves the accuracy of differential diagnosis of malignant breast tumors. Identified radiological and histological markers – such as margin characteristics, shape, density, and type of calcifications – are key to distinguishing between benign and malignant lesions. The BI-RADS system, together with ACR-based breast density assessment, plays a critical role in risk stratification and in guiding further patient management strategies.

References

Huang, J., Chan, P. S., Lok, V., Chen, X., Ding, H., Jin, Y., Yuan, J., Lao, X. Q., Zheng, Z. J., Wong, M. C. (2021). Global incidence and mortality of breast cancer: a trend analysis. Aging, 13(4), 5748–5803. DOI: https://doi.org/10.18632/aging.202502

Bray, F., Laversanne, M., Weiderpass, E., Soerjomataram, I. (2021). The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 127(16), 3029–3030. DOI: https://doi.org/10.1002/cncr.33587

Chen, S., Cao, Z., Prettner, K., Kuhn, M., Yang, J., Jiao, L., Wang, Z., Li, W., Geldsetzer, P., Bärnighausen, T., Bloom, D. E., Wang, C. (2023). Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050. JAMA Oncology, 9(4), 465–472. DOI: https://doi.org/10.1001/jamaoncol.2022.7826

Paepke, S., Metz, S., Brea Salvago, A., Ohlinger, R. (2018). Benign breast tumours – diagnosis and management. Breast Care (Basel, Switzerland), 13(6), 403–412. DOI: https://doi.org/10.1159/000495919

Ramala, S., Kadam, P., Kothari, A. (2023). A comprehensive review of breast fibroadenoma: clinical-pathological correlations. Cureus, 15(9), e45119. DOI: https://doi.org/10.7759/cureus.45119

Van Dooijeweert, C., van Diest, P. J., Ellis, I. O. (2022). Grading of invasive breast carcinoma: the way forward. Virchows Archiv: An International Journal of Pathology, 480(1), 33–43. DOI: https://doi.org/10.1007/s00428-021-03141-2

Dsilva, R. M., Shivalingappa, S. S., Sampangi, S. (2024). Radiology–pathology correlation of hormonal subtypes of breast cancer based on mammography, ultrasound, and PET imaging. Egyptian Journal of Radiology and Nuclear Medicine, 55, 222. DOI: https://doi.org/10.1186/s43055-024-01392-y

Sanlı, D. E. T., Içten, G. E., Kul, S., Aslan, Ö., Avdan, A., Yilmaz, E. та ін. (2025). Correlation of radiological and pathological tumor sizes in breast cancer based on molecular subtypes and accompanying DCIS: a retrospective multicenter study. Academic Radiology, 32(6), 3511–3518. DOI: https://doi.org/10.1016/j.acra.2025.01.037

Galati, F., De Mattheis, L., Marini, M., Roselli, A., Bonomo, L., Pediconi, F. (2022). Radiologic-pathologic correlation in breast cancer: do MRI biomarkers correlate with pathologic features and molecular subtypes? European Radiology Experimental, 6, 39. DOI: https://doi.org/10.1186/s41747-022-00289-7

Cheng, B. W. T., Fan, Y., Kaushal, A., Sridhar, S. S., Kulkarni, S. R., Elnazir, M. та ін. (2024). Contrast-enhanced mammography imaging features versus molecular subtypes of breast cancer: radiologic–pathologic correlation. Cureus, 16(7), e64791. DOI: https://doi.org/10.7759/cureus.64791

Bodewes, F. T. H., van Asselt, A. A., Dorrius, M. D., Greuter, M. J. W., de Bock, G. H. (2022). Mammographic breast density and the risk of breast cancer: a systematic review and meta-analysis. Breast (Edinburgh, Scotland), 66, 62–68. DOI: https://doi.org/10.1016/j.breast.2022.09.007

Boere, I., Lok, C., Poortmans, P., Koppert, L., Painter, R., Vd Heuvel-Eibrink, M. M., Amant, F. (2022). Breast cancer during pregnancy: epidemiology, phenotypes, presentation during pregnancy and therapeutic modalities. Best Practice & Research. Clinical Obstetrics & Gynaecology, 82, 46–59. DOI: https://doi.org/10.1016/j.bpobgyn.2022.05.001

Merino Bonilla, J. A., Torres Tabanera, M., Ros Mendoza, L. H. (2017). Breast cancer in the 21st century: from early detection to new therapies [El cáncer de mama en el siglo XXI: de la detección precoz a los nuevos tratamientos]. Radiologia, 59(5), 368–379. DOI: https://doi.org/10.1016/j.rx.2017.06.003

Mohan, R., Selvakumar, A. S., S, R., K, M., S, S., Kathiah, R., T, R., Rajan Prasaad, P., Kumar, S. D., K, S. (2024). Correlation of histopathology and radiological findings among the diverse breast lesions in a tertiary care centre. Cureus, 16(1), e52097. DOI: https://doi.org/10.7759/cureus.52097

Liu, L., Yu, C., Fan, Q., Zeng, B. (2025). Performance of digital breast tomosynthesis with digital mammography for detecting breast cancer in the diagnostic setting: a meta-analysis. Clinical and Experimental Medicine, 25(1), 241. DOI: https://doi.org/10.1007/s10238-025-01789-7

World Health Organization. (2019). Breast tumours: WHO classification of tumours (5th ed., Vol. 2). Geneva, Switzerland: WHO Classification of Tumours Editorial Board.

Gastounioti, A., McCarthy, A. M., Pantalone, L., Synnestvedt, M., Kontos, D., Conant, E. F. (2019). Effect of mammographic screening modality on breast density assessment: digital mammography versus digital breast tomosynthesis. Radiology, 291(2), 320–327. DOI: https://doi.org/10.1148/radiol.2019181740

Expert Panel on Breast Imaging, Lewin, A. A., Moy, L., Baron, P., Didwania, A. D., di Florio-Alexander, R. M., Hayward, J. H., Le-Petross, H. T., Newell, M. S., Rewari, A., Scheel, J. R., Stuckey, A. R., Suh, W. W., Ulaner, G. A., Vincoff, N. S., Weinstein, S. P., Slanetz, P. J. (2019). ACR Appropriateness Criteria® Stage I breast cancer: initial workup and surveillance for local recurrence and distant metastases in asymptomatic women. Journal of the American College of Radiology: JACR, 16(11S), S428–S439. DOI: https://doi.org/10.1016/j.jacr.2019.05.024

Expert Panel on Breast Imaging, Niell, B. L., Jochelson, M. S., Amir, T., Brown, A., Adamson, M., Baron, P., Bennett, D. L., Chetlen, A., Dayaratna, S., Freer, P. E., Ivansco, L. K., Klein, K. A., Malak, S. F., Mehta, T. S., Moy, L., Neal, C. H., Newell, M. S., Richman, I. B., Schonberg, M., … Slanetz, P. J. (2024). ACR Appropriateness Criteria® female breast cancer screening: 2023 update. Journal of the American College of Radiology: JACR, 21(6S), S126–S143. DOI: https://doi.org/10.1016/j.jacr.2024.02.019

Expert Panel on Breast Imaging, McDonald, E. S., Scheel, J. R., Lewin, A. A., Weinstein, S. P., Dodelzon, K., Dogan, B. E., Fitzpatrick, A., Kuzmiak, C. M., Newell, M. S., Paulis, L. V., Pilewskie, M., Salkowski, L. R., Silva, H. C., Sharpe, R. E., Jr, Specht, J. M., Ulaner, G. A., Slanetz, P. J. (2024). ACR Appropriateness Criteria® imaging of invasive breast cancer. Journal of the American College of Radiology: JACR, 21(6S), S168–S202. DOI: https://doi.org/10.1016/j.jacr.2024.02.021

Kim, S. Y., Woo, O. H. (2024). Implications of digital breast tomosynthesis in breast cancer screening: reducing advanced breast cancers. Radiology, 312(3), e242008. DOI: https://doi.org/10.1148/radiol.242008

Pattacini, P., Nitrosi, A., Giorgi Rossi, P., Iotti, V., Ginocchi, V., Ravaioli, S., Vacondio, R., Braglia, L., Cavuto, S., Campari, C., RETomo Working Group. (2018). Digital mammography versus digital mammography plus tomosynthesis for breast cancer screening: the Reggio Emilia tomosynthesis randomized trial. Radiology, 288(2), 375–385. DOI: https://doi.org/10.1148/radiol.2018172119

Wang, Y., Li, Y., Song, Y., Chen, C., Wang, Z., Li, L., Liu, M., Liu, G., Xu, Y., Zhou, Y., Sun, Q., Shen, S. (2022). Comparison of ultrasound and mammography for early diagnosis of breast cancer among Chinese women with suspected breast lesions: a prospective trial. Thoracic Cancer, 13(22), 3145–3151. DOI: https://doi.org/10.1111/1759-7714.14666

Liu, H., Zhan, H., Sun, D., Zhang, Y. (2020). Comparison of BSGI, MRI, mammography, and ultrasound for the diagnosis of breast lesions and their correlations with specific molecular subtypes in Chinese women. BMC Medical Imaging, 20(1), 98. DOI: https://doi.org/10.1186/s12880-020-00497-w

Tian, R., Lu, G., Zhao, N., Qian, W., Ma, H., Yang, W. (2024). Constructing the optimal classification model for benign and malignant breast tumors based on multifeature analysis from multimodal images. Journal of Imaging Informatics in Medicine, 37(4), 1386–1400. DOI: https://doi.org/10.1007/s10278-024-01036-7

Published

2025-10-17

Issue

Section

MEDICINE