IMMUNOLOGICAL AND GENETIC MARKERS FOR COVID-19
DOI:
https://doi.org/10.32782/health-2023.3.5Keywords:
COVID-19, immunogenetic markers, polymorphism, cytokinesAbstract
In addition, the global frequencies of aleles have been recovered, saved in the Allele Frequency Net Database (AFND) and the Ensembl database (ensembl.org), as well as access to the databases: Pubmed, Embase, Scopus, Web of Science, Google Scholar. There is further evidence that the importance of transmission and lethality of COVID-19 may be associated with immunogenetic markers (HLA-B, IL6, IL10 and IL12B). However, the results are responsible for insurance for further evaluation and confirmation in more structured reports. Varto indicates that the design of further investigations is to blame for the protection of concomitant illnesses, as they can contribute to the prognosis of the outbreak of illness, stinks of stench caused by these immunogenetic markers. In addition, following the selection of stratification strategies for the selection of species, unique stratification of the subgroups, shards and polymorphisms may have a wide range of variability associated with ethnicity. So, it is important to check the additive effects and approach the assessment of these markers for the improvement of their possible impact on these officials. The final results confirm the importance of genetic factors in the identified risk and overcoming of COVID-19. Conducted studies confirmed the results, which indicate the important role of immunological status in the context of the new coronavirus disease COVID-19. The revealed links between genetic markers of immunity and susceptibility to illness can become the basis for further research and development of new preventive and therapeutic strategies. However, the diversity and genetic diversity of immunological interactions, the necessary additions to the various structuring protocols, in order to improve our understanding of the genetic immunological features of COVID-19.
References
Vetter P., Vu D.L., L’Huillier A.G., Schibler M., Kaiser L., Jacquerioz F. Clinical features of covid-19. BMJ. 2020;369:1–2. doi: 10.1136/bmj.m1470.
Zhao J., Yang Y., Huang H.-P., Li D., Gu D.-F., Lu X.-F., Zhang Z., Liu L., Liu T., Liu Y.-K., He Y.-J. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. MedRxiv. 2020;2020(03) doi: 10.1101/2020.03.11.20031096.
Stawiski E.W., Diwanji D., Suryamohan K., Gupta R., Fellouse F.A., Sathirapongsasuti J.F.et all. Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. BioRxiv. 2020:24. doi: 10.1101/2020.04.07.024752.
Pedersen S.F., Ho Y.-C. SARS-CoV-2: A Storm is Raging. J. Clin. Invest. 2020 doi: 10.1172/JCI137647.
Wu D., Yang X.O. TH17 Responses in Cytokine Storm of COVID-19: An Emerging Target of JAK2 Inhibitor Fedratinib. J. Microbiol. Immunol. Infect. 2020:17–19. doi: 10.1016/j.jmii.2020.03.005.
Lin M., Tseng H.K., Trejaut J.A., Lee H.L., Loo J.H., Chu C.C., Chen P.J., Su Y.W. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med. Genet. 2003;4:1–7. doi: 10.1186/1471-2350-4-9.
Hajeer A.H., Balkhy H., Johani S., Yousef M.Z., Arabi Y. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome – coronavirus infection. Ann. Thorac. Med. 2016:211–213. doi: 10.4103/1817-1737.185756.
Wang C., Xia C.Q. The Involvement of Natural Killer Cells in the Pathogenesis of Severe Acute Respiratory Syndrome. Am. J. Clin. Pathol. 2004;121:507–511. doi: 10.1309/WPK7Y2XKNF4CBF3R.
González-Galarza F.F., Takeshita L.Y.C., Santos E.J.M., Kempson F., Maia M.H.T., Da Silva A.L.S., Teles E Silva A.L., Ghattaoraya G.S., Alfirevic A., Jones A.R., Middleton D. Allele frequency net 2015 update: New features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015;43(2015):D784–D788. doi: 10.1093/nar/gku1166.
A.D. Yates, P. Achuthan, W. N. Langridge, J.E. Loveland, F.J. Martin, J. Morales, J.M. Mudge, M. Muffato, D.R. Zerbino, P. Flicek, Ensembl 2020, Nucleic Acids Res. 48 (2020) D682–D688. 10.1093/nar/gkz966.
Prugnolle F., Manica A., Charpentier M., Guégan J.F., Guernier V., Balloux F. Pathogen-driven selection and worldwide HLA class I diversity. Curr. Biol. 2005;15:1022–1027. doi: 10.1016/j.cub.2005.04.050.
Blackwell J.M., Jamieson S.E., Burgner D. HLA and infectious diseases. Clin. Microbiol. Rev. 2009;22:370–385. doi: 10.1128/CMR.00048-08.
Lacey S.F., Villacres M.C., La Rosa C., Wang Z., Longmate J., Martinez J., Brewer J.C., Mekhoubad S., Maas R., Leedom J.M., Forman S.J., Zaia J.A., Diamond D.J. Relative dominance of HLA-B*07 restricted CD8+ T-lymphocyte immune responses to human cytomegalovirus pp65 in persons sharing HLA-A*02 and HLA-B*07 Alleles. Hum. Immunol. 2003;64:440–452. doi: 10.1016/S0198-8859(03)00028-4.
Boon A.C.M., de Mutsert G., Fouchier R.A.M., Sintnicolaas K., Osterhaus A.D.M.E., Rimmelzwaan G.F. Preferential HLA Usage in the Influenza Virus-Specific CTL Response. J. Immunol. 2004;172:4435–4443. doi: 10.4049/jimmunol.172.7.4435
Kiepiela P., Leslie A.J., Honeyborne I., Ramduth D., Thobakgale C., Chetty S., Rathnavalu P. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004;432:769–774. doi: 10.1038/nature03113.
dos Santos E.J.M., McCabe A., Gonzalez-Galarza F.F., Jones A.R., Middleton D. Allele Frequencies Net Database: Improvements for storage of individual genotypes and analysis of existing data. Hum. Immunol. 2015 doi: 10.1016/j.humimm.2015.11.013.
Jurtz V., Paul S., Andreatta M., Marcatili P., Peters B., Nielsen M. NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J. Immunol. 2017;199:3360–3368. doi: 10.4049/jimmunol.1700893.
Robinson J., Barker D.J., Georgiou X., Cooper M.A., Flicek P., Marsh S.G.E. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020;48:D948–D955. doi: 10.1093/nar/gkz950.
Merino A.M., Sabbaj S., Easlick J., Goepfert P., Kaslow R.A., Tang J. Dimorphic HLA-B signal peptides differentially influence HLA-E- and natural killer cell-mediated cytolysis of HIV-1-infected target cells. Clin. Exp. Immunol. 2013;174:414–423. doi: 10.1111/cei.12187.
Hallner A., Bernson E., Hussein B.A., Sander F.E., Brune M., Aurelius J., Martner A., Hellstrand K., Thorén F.B. The HLA-B 221 dimorphism impacts on NK cell education and clinical outcome of immunotherapy in acute myeloid leukemia. Blood. 2019;133:1479–1488. doi: 10.1182/blood-2018-09-874990.
Kulkarni S., Martin M.P., Carrington M. The Yin and Yang of HLA and KIR in human disease. Semin. Immunol. 2008;20:343–352. doi: 10.1016/j.smim.2008.06.003.