EFFECTS AND THERAPEUTIC POTENTIAL OF CANNABIDIOL IN CARDIOVASCULAR DISEASES

Authors

DOI:

https://doi.org/10.32782/health-2023.4.14

Keywords:

cannabidiol, cannabinoids, hemp, cardiovascular system, hypertension, ischemia, heart attack, cardiomyopathy, vasodilation, cardiovascular complications of diabetes

Abstract

Cannabis sativa contains more than 100 phytocannabinoids, the most important of which are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is the main psychoactive ingredient in cannabis, responsible for the main effects associated with the use of the plant. CBD is considered a non-psychoactive phytocannabinoid, does not cause addiction or serious side effects. A few scientific articles have been published that demonstrate the potential therapeutic effects of CBD in various diseases. Basic and clinical studies have shown that CBD has multidirectional properties such as antioxidant, anti-inflammatory, immunomodulatory, anticonvulsant, as well as various effects such as neuroprotective, procognitive, anti-anxiety, anti-psychotic and anti-proliferative. The goal is to evaluate the effects and therapeutic potential of cannabidiol in cardiovascular diseases based on the analyzed results of experimental and clinical use of cannabidiol. Materials. The results of the included studies were selected based on a search of the online databases PubMed, Web of Science, Scopus, Google Scholar for documents related to the effects of CBD on the cardiovascular system. The keywords used were “cannabidiol”, “endocannabinoid system”, “cannabinoid receptors”, “endocannabinoids”, “cardiovascular system”, “cardiovascular diseases”. 164 sources were selected for analysis, of which 43 were used that met the search criteria. Results. Based on the analysis of experimental and clinical studies, it was established that cannabidiol can have different effects on the cardiovascular system due to the presence of a complex mechanism of action. Despite its vasodilator properties, CBD has not been shown to have hypotensive effects in experimental models of hypertension, but CBD has been found to reduce stress-induced increases in blood pressure in humans and experimental animals. In experimental studies of acute ischemia or myocardial infarction, myocarditis, cardiomyopathy caused by hyperglycemia, the high cardioprotective potential of CBD was determined. In these experimental models of heart disease, CBD reduced myocardial damage and dysfunction, inflammatory processes in the vessel wall and myocardium, and eliminated the adverse effects of hyperglycemia by reducing oxidative and nitrative stress. Conclusions. Despite the results and achievements, further experimental and clinical studies are needed to determine the dose, possible side effects with long-term use of CBD, when interacting with drugs administered at the same time, in order to recommend its use for the treatment of cardiovascular diseases.

References

Turner S.E., Williams C.M., Iversen L., Whalley B.J. Molecular pharmacology of phytocannabinoids. In Phytocannabinoids. Springer : Berlin/Heidelberg, Germany, 2017; pp. 61–101. https://doi.org/10.1007/978-3-319-45541-9_3.2. URL: https://pubmed.ncbi.nlm.nih.gov/?term=cannabinoid.

Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history / S.A. Bonini, M. Premoli, S. Tambaro, A. Kumar, G. Maccarinelli, M. Memo, A. Mastinu. J. Ethnopharmacol. 2018. No. 227. P. 300–315. https://doi.org/10.1016/j.jep.2018.09.004.

Zuardi A.W. Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. Rev Bras Psiquiatr. 2008. No. 30. P. 271–280. DOI: 10.1590/S1516-44462008000300015.

Crippa J.A., Guimarães F.S., Campos A.C., Zuardi A.W. Translational Investigation of the Therapeutic Potential of Cannabidiol (CBD): Toward a New Age. Front Immunol. 2018. No. 9. P. 2009. DOI: 10.3389/fimmu.2018.02009.

Шевчук М.М., Волос Л.І. Терапевтичний потенціал канабідіолу: найважливіші здобутки на шляху до нової ери. Медична наука України. 2023. Vol. 19, № 2. C. 132–141. DOI: https://doi.org/10.32345/2664-4738.2.2023.17.

Burstein S. Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorg Med Chem. 2015. No. 23(7). P. 1377–1385. DOI: 10.1016/j.bmc.2015.01.059.

Atalay S., Jarocka-Karpowicz I., Skrzydlewska E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants. 2019. No. 9(1). P. 21. https://doi.org/10.3390/antiox9010021.

Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment / M. Premoli, F. Aria, S.A. Bonini, G. Maccarinelli, A. Gianoncelli, S.D. Pina, S. Tambaro, M. Memo, A. Mastinu. Life Sci. 2019. No. 224. P. 120–127. https://doi.org/10.1016/j.lfs.2019.03.053.

Cannabidiol for the treatment of psychosis in Parkinson's disease / A.W. Zuardi, J.A. Crippa, J.E. Hallak, J.P. Pinto, M.H. Chagas, G.G. Rodrigues. J Psychopharmacol. 2009. No. 23. P. 979–983. DOI: 10.1177/0269881108096519.

Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination / J. Gonçalves, T. Rosado, S. Soares, A.Y. Simão, D. Caramelo, Â. Luís, N. Fernández, M. Barroso, E. Gallardo, A.P. Duarte. Medicines. 2019. No. 6(1). P. 31. https://doi.org/10.3390/medicines6010031.

Mechoulam R., Shvo Y. Hashish. I. The structure of cannabidiol. Tetrahedron. 1963. No. 19. P. 2073–2078. https://doi.org/10.1016/0040-4020(63)85022-x.

Mechoulam R., Gaoni Y. The absolute configuration of Δ1-tetra-hydrocannabinol, the major active constituent of hashish. Tetrahedron. Lett. 1967. No. 12. P. 1109–1111. https://doi.org/10.1016/s0040-4039(00)90646-4.

Franco V., Perucca E. Pharmacological and Therapeutic Properties of Cannabidiol for Epilepsy. Drugs. 2019. No. 79(13). P. 1435–1454. https://doi.org/10.1007/s40265-019-01171-4.

Community Register of Orphan Medicinal Products (European Commision). URL: https://ec.europa.eu/health/documents/community-register/html/reg_od_act.htm?sort=a (дата звернення: 18.05.2020).

Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? / V. Martínez, A. Iriondo De-Hond, F. Borrelli, R. Capasso, M.D. Del Castillo, R. Abalo. Int. J. Mol. Sci. 2020. No. 21. P. 3067. https://doi.org/10.3390/ijms21093067.

Sierra S., Luquin N., Navarro-Otano J. The Endocannabinoid System in Cardiovascular Function: Novel Insights and Clinical Implications. Clin. Auton. Res. 2018. No. 28(1). P. 35–52. https://doi.org/10.1007/s10286-017-0488-5.

Cardiovascular effects of marijuana and synthetic cannabinoids: The good, the bad, and the ugly / P. Pacher, S. Steffens, G. Haskó, T.H. Schindler, G. Kunos. Nat. Rev. Cardiol. 2018. No. 15. P. 151–166. https://doi.org/10.1038/nrcardio.2017.130.

Schiro A., Sadia U., Pherwani A. Review of the effect of Cannabidiol on the Vascular System. Transl Biomed. 2021. Vol. 12. No. 10. P. 198. URL: https://www.google.com/.

Sultan S.R., Millar S.A., England T.J., O’Sullivan S.E. A Systematic Review and Meta-Analysis of the Haemodynamic Effects of Cannabidiol. Front. Pharmacol. 2017. No. 8. P. 81. https://doi.org/10.3389/fphar.2017.00081.

Malinowska M., Toczek M., Pedzinska-Betiuk A., Schlicker E. Cannabinoids in arterial, pulmonary and portal hypertension – Mechanisms of action and potential therapeutic significance. Br. J. Pharmacol. 2019. No. 176. P. 1395–1411. https://doi.org/10.1111/bph.14168.

Atalay S., Jarocka-Karpowicz I., Skrzydlewska E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants. 2019. No. 9. P. 21. https://doi.org/10.3390/antiox9010021.

Chronic Cannabidiol Administration Fails to Diminish Blood Pressure in Rats with Primary and Secondary Hypertension Despite Its Effects on Cardiac and Plasma Endocannabinoid System, Oxidative Stress and Lipid Metabolism / P. Remiszewski, I. Jarocka-Karpowicz, M. Biernacki, A. Jastrzab, E. Schlicker, M. Toczek, E. Harasim-Symbor, A. Pedzinska-Betiuk, B. Malinowska. Int. J. Mol. Sci. 2020. No. 21. P. 1295. https://doi.org/10.3390/ijms21041295.

Vasodilatory effects of cannabidiol in human pulmonary and rat small mesenteric arteries-modification by hypertension and the potential pharmacological opportunities / M. Baranowska-Kuczko, H. Kozłowska, M. Kloza, O. Sadowska, M. Kozłowski, M. Kusaczuk, I. Kasacka, B. Malinowska. J. Hypertens. 2020. No. 38. P. 896–911. https://doi.org/10.1097/hjh.0000000000002333.

Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury / R. Durst, H. Danenberg, R. Gallily, R. Mechoulam, K. Meir, E. Grad, R. Beeri, T. Pugatsch, E. Tarsish, C. Lotan. Am J. Physiol. Heart. Circ. Physiol. 2007. No. 93. P. 3602–3607. https://doi.org/10.1152/ajpheart.00098.2007.

Pharmacologic Effects of Cannabidiol on Acute Reperfused Myocardial Infarction in Rabbits: Evaluated with 3.0T Cardiac Magnetic Resonance Imaging and Histopathology / Y. Feng, F. Chen, T. Yin, Q. Xia, Y. Liu, G. Huang, J. Zhang, R. Ni Y.J. Oyen. J. Cardiovasc. Pharmacol. 2015. No. 66. P. 354–363. http://dx.doi.org/10.1097/FJC.0000000000000287.

Walsh S.K., Hepburn C.Y., Kane K.A., Wainwright C.L. Acute administration of cannabidiol in vivo suppresses ischaemia-induced cardiac arrhythmias and reduces infarct size when given at reperfusion. Br. J. Pharmacol. 2010. No. 160. P. 1234–1242. https://doi.org/10.1111/j.1476-5381.2010.00755.x.

Gonca E., Darici F. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: The role of adenosine A1 receptors. J. Cardiovasc. Pharmacol Ther. 2015. No. 20. P. 76–83. https://doi.org/10.1177/1074248414532013.

Fouad A.A., Albuali W.H., Al-Mulhim A.S., Jresat I. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. Environ. Toxicol. Pharmacol. 2013. No. 36. P. 347–357. https://doi.org/10.1016/j.etap.2013.04.018.

Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis / E. Hao, P. Mukhopadhyay, Z. Cao, K. Erdélyi, E. Holovac, L. Liaudet, W.S. Lee, G. Haskó, R. Mechoulam, P. Pacher. Mol. Med. 2015. No. 21. P. 38–45. https://doi.org/10.2119/molmed.2014.00261.

Cannabidiol Limits T Cell-Mediated Chronic Autoimmune Myocarditis: Implications to Autoimmune Disorders and Organ Transplantation / W.S. Lee, K. Erdelyi, C. Matyas, P. Mukhopadhyay, Z.V. Varga, L. Liaudet, G. Haskú, D. Ciháková, R. Mechoulam, P. Pacher. Mol. Med. 2016. No. 22. P. 136–146. https://doi.org/10.2119/molmed.2016.00007.

Wheal A.J., Jadoon K., Randall M.D., O’Sullivan S.E. In Vivo Cannabidiol Treatment Improves Endothelium-Dependent Vasorelaxation in Mesenteric Arteries of Zucker Diabetic Fatty Rats. Front. Pharmacol. 2017. No. 8. P. 248. https://doi.org/10.3389/fphar.2017.00248.

Efficacy and Safety of Cannabidiol and Tetrahydrocannabivarin on Glycemic and Lipid Parameters in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study / K.A. Jadoon, S.H. Ratcliffe, D.A. Barrett, E.L. Thomas, C. Stott, J.D. Bell, S.E. O’Sullivan, G.D. Tan. Diabetes Care. 2016. No. 39. P. 1777–1786. https://doi.org/10.2337/dc16-0650.

Stanley C.P., Wheal A.J., Randall M.D., O’Sullivan S.E. Cannabinoids alter endothelial function in the Zucker rat model of type 2 diabetes. Eur. J. Pharmacol. 2013. No. 720. P. 376–382. https://doi.org/10.1016/j.ejphar.2013.10.002.

Cannabidiol improves vasorelaxation in Zucker diabetic fatty rats through cyclooxygenase activation / A.J. Wheal, M. Cipriano, C.J. Fowler, M.D. Randall, S.E. O’Sullivan. J. Pharmacol. Exp. Ther. 2014. No. 351. P. 457–466. https://doi.org/10.1124/jpet.114.217125.

Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes / A.B. El-Remessy, M. Al-Shabrawey, Y. Khalifa, N.T. Tsai, R.B. Caldwell, G.I. Liou. Am. J. Pathol. 2006. No. 168. P. 235–244. https://doi.org/10.2353/ajpath.2006.050500.

Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy / M. Rajesh, P. Mukhopadhyay, S. Bátkai, V. Patel, K. Saito, S. Matsumoto, Y. Kashiwaya, B. Horváth, B. Mukhopadhyay, L. Becker. J. Am. Coll. Cardiol. 2010. No. 56. P. 2115–2125. https://doi.org/10.1016/j.jacc.2010.07.033.

5-HT1A receptors are involved in the cannabidiol induced attenuation of behavioral and cardiovascular responses to acute restraint stress in rats / L.B.N. Resstel, R.F. Tavares, S.F.S. Lisboa, S.R.L. Joca, F.M.A. Corrêa, F.S. Guimarães. Br. J. Pharmacol. 2009. No. 156. P. 181–188. https://doi.org/10.1111%2Fj.1476-5381.2008.00046.x.

Zuardi A.W., Cosme R.A., Graeff F.G., Guimarães F.S. Effects of ipsapirone and cannabidiol on human experimental anxiety. J. Psychopharmacol. 1993. No. 7. P. 82–88. https://doi.org/10.1177/026988119300700112.

Sultan S.R., Millar S.A., England T.J., O’Sullivan S.E. A Systematic Review and Meta-Analysis of the Haemodynamic Effects of Cannabidiol. Front. Pharmacol. 2017. No. 8. P. 81. https://doi.org/10.3389/fphar.2017.00081.

Cannabidiol administration into the bed nucleus of the stria terminalis alters cardiovascular responses induced by acute restraint stress through 5-HT1A receptor / F.V. Gomes, F.H. Alves, F.S. Guimarães, F.M. Correa, L.B. Resstel, C.C. Crestani. Eur. Neuropsychopharmacol. 2013. No. 23. P. 1096–1104. https://doi.org/10.1016/j.euroneuro.2012.09.007.

Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients /M.M. Bergamaschi, R.H. Queiroz, M.H. Chagas, D.C. de Oliveira, B.S. De Martinis, F. Kapczinski, J. Quevedo, R. Roesler, N. Schröder, A.E. Nardi. Neuropsychopharmacology. 2011. No. 36. P. 1219–1226. https://doi.org/10.1038/npp.2011.6.

Sultan S.R., O’Sullivan S.E., England T.J. The effects of acute and sustained cannabidiol dosing for seven days on the haemodynamics in healthy men: A randomised controlled trial. Br. J. Clin. Pharmacol. 2020. No. 86. P. 1125–1138. https://doi.org/10.1111/bcp.14225.

Published

2023-12-13

Issue

Section

MEDICINE